Solveeit Logo

Question

Question: Let \(A = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 1&1&0 \\\ 1&1&1 \end{array}} \r...

Let A = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 1&1&0 \\\ 1&1&1 \end{array}} \right] and B=A20B = {A^{20}}. Then the sum of the elements of the first column of BB is?
(A) 211211
(B) 210210
(C) 231231
(D) 251251

Explanation

Solution

Firstly, find the value of A2,A3,...{A^2},{A^3},... and so on. Then make a relation between the elements of the first column by finding the general term. For example- The general term for the sequence 2,4,6,8,.....2,4,6,8,..... is given by n(n+1)n\left( {n + 1} \right).

Complete step-by-step answer:
Given: A = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 1&1&0 \\\ 1&1&1 \end{array}} \right] and B=A20B = {A^{20}}
Now, A2=A×A{A^2} = A \times A
{A^2} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 1&1&0 \\\ 1&1&1 \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 1&1&0 \\\ 1&1&1 \end{array}} \right]
{A^2} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 2&1&0 \\\ 3&2&1 \end{array}} \right]
Similarly, A3=A2×A{A^3} = {A^2} \times A
{A^3} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 2&1&0 \\\ 3&2&1 \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 1&1&0 \\\ 1&1&1 \end{array}} \right]
{A^3} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 3&1&0 \\\ 6&3&1 \end{array}} \right]
Now from above calculation in first column, we observed that:
In every multiplication, first elements of the column is 11.
Second element increases by 11.
Third element being in a series: 1,3,6,10,....1,3,6,10,....; whose general term is n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2}.
Therefore, sum of first column in A20=1+n+n(n+1)2{A^{20}} = 1 + n + \dfrac{{n\left( {n + 1} \right)}}{2}
Put n=20,
Sum of first column in A20=1+20+20(20+1)2{A^{20}} = 1 + 20 + \dfrac{{20\left( {20 + 1} \right)}}{2}
=1+20+10×21= 1 + 20 + 10 \times 21
=1+20+210= 1 + 20 + 210
=231= 231

Hence, option (C) is the correct answer.

Note: Another method to solve this question is find the value of A2,A3,.....A20{A^2},{A^3},.....{A^{20}}.
B = {A^{20}} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ {20}&1&0 \\\ {210}&{20}&1 \end{array}} \right]
Then, the sum of first column in BB =1+20+210 = 1 + 20 + 210 =231 = 231