Solveeit Logo

Question

Question: Let a integral is given as \({a_n} = \int_{ - \pi }^\pi {\left| {x - 1} \right|\cos nxdx} \) for all...

Let a integral is given as an=ππx1cosnxdx{a_n} = \int_{ - \pi }^\pi {\left| {x - 1} \right|\cos nxdx} for all natural numbers n. Then the sequence (an)n0{\left( {{a_n}} \right)_{n \geqslant 0}} satisfies.
(a)limnan=\left( a \right)\mathop {\lim }\limits_{n \to \infty } {a_n} = \infty
(b)limnan=\left( b \right)\mathop {\lim }\limits_{n \to \infty } {a_n} = - \infty
(c)limnan\left( c \right)\mathop {\lim }\limits_{n \to \infty } {a_n} exists and is positive.
(d)limnan=0\left( d \right)\mathop {\lim }\limits_{n \to \infty } {a_n} = 0

Explanation

Solution

In this particular question use the concept of breaking the integration limit by using the property that abf(x)dx=abf(x)dx+bcf(x)dx\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( x \right)dx} + \int_b^c {f\left( x \right)dx} where, a<c<ba < c < b, we break this because of the modulus function, so we have to break the integration limit into which modulus function is negative and into which modulus function is positive, so use these concepts to reach the solution of the question.

Complete step-by-step solution:
Given integral:
an=ππx1cosnxdx{a_n} = \int_{ - \pi }^\pi {\left| {x - 1} \right|\cos nxdx}
Now substitute x – 1 = 0
Therefore, x = 1.
So from (π to 1)\left( { - \pi {\text{ to 1}}} \right) |x – 1| is negative and from (1 to π)\left( {{\text{1 to }}\pi } \right) |x – 1| is positive.
So break the integration limits accordingly we have,
an=π1(x1)cosnxdx+1π(x1)cosnxdx\Rightarrow {a_n} = \int_{ - \pi }^1 { - \left( {x - 1} \right)\cos nxdx} + \int_1^\pi {\left( {x - 1} \right)\cos nxdx}
an=π1(1x)cosnxdx+1π(x1)cosnxdx\Rightarrow {a_n} = \int_{ - \pi }^1 {\left( {1 - x} \right)\cos nxdx} + \int_1^\pi {\left( {x - 1} \right)\cos nxdx}
Now as we know the formula of integration by parts which is given as, (I1)(I2)dx=I1I2dx(ddxI1I2dx)dx+C\int {\left( {{I_1}} \right)\left( {{I_2}} \right)dx} = {I_1}\int {{I_2}dx} - \int {\left( {\dfrac{d}{{dx}}{I_1}\int {{I_2}dx} } \right)dx} + C, where C is some arbitrary integration constant, so use this property in the above equation we have,
Where, in first integral I1=(1x),I2=cosnx{I_1} = \left( {1 - x} \right),{I_2} = \cos nx and in second integral I1=(x1),I2=cosnx{I_1} = \left( {x - 1} \right),{I_2} = \cos nx so we have,
\Rightarrow {a_n} = \left[ {\left\\{ {\left( {1 - x} \right)\int {\cos nxdx} } \right\\}_{ - \pi }^1 - \int\limits_{ - \pi }^1 {\left( {\dfrac{d}{{dx}}\left( {1 - x} \right)\int {\cos nxdx} } \right)} dx} \right] + \left[ {\left\\{ {\left( {x - 1} \right)\int {\cos nxdx} } \right\\}_1^\pi - \int\limits_1^\pi {\left( {\dfrac{d}{{dx}}\left( {x - 1} \right)\int {\cos nxdx} } \right)} dx} \right]
Now as we know that cosnxdx=sinnxn+C,ddx1=0,ddxx=1\int {\cos nxdx} = \dfrac{{\sin nx}}{n} + C,\dfrac{d}{{dx}}1 = 0,\dfrac{d}{{dx}}x = 1 so use these properties in the above equation we have,
\Rightarrow {a_n} = \left[ {\left\\{ {\left( {1 - x} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_{ - \pi }^1 - \int\limits_{ - \pi }^1 {\left( {\left( {0 - 1} \right)\dfrac{{\sin nx}}{n}} \right)} dx} \right] + \left[ {\left\\{ {\left( {x - 1} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_1^\pi - \int\limits_1^\pi {\left( {\left( {1 - 0} \right)\dfrac{{\sin nx}}{n}} \right)} dx} \right]
\Rightarrow {a_n} = \left[ {\left\\{ {\left( {1 - x} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_{ - \pi }^1 + \int\limits_{ - \pi }^1 {\dfrac{{\sin nx}}{n}} dx} \right] + \left[ {\left\\{ {\left( {x - 1} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_1^\pi - \int\limits_1^\pi {\dfrac{{\sin nx}}{n}} dx} \right]
Now as we know that sinnxdx=cosnxn+C\int {\sin nxdx} = \dfrac{{ - \cos nx}}{n} + C so we have,
\Rightarrow {a_n} = \left[ {\left\\{ {\left( {1 - x} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_{ - \pi }^1 + \left[ {\dfrac{{ - \cos nx}}{{{n^2}}}} \right]_{ - \pi }^1} \right] + \left[ {\left\\{ {\left( {x - 1} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_1^\pi - \left[ {\dfrac{{ - \cos nx}}{{{n^2}}}} \right]_1^\pi } \right]
\Rightarrow {a_n} = \left[ {\left\\{ {\left( {1 - x} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_{ - \pi }^1 - \left[ {\dfrac{{\cos nx}}{{{n^2}}}} \right]_{ - \pi }^1} \right] + \left[ {\left\\{ {\left( {x - 1} \right)\left( {\dfrac{{\sin nx}}{n}} \right)} \right\\}_1^\pi + \left[ {\dfrac{{\cos nx}}{{{n^2}}}} \right]_1^\pi } \right]
Now apply integration limits we have,
an=[(1+π)[sin(nπ)n][cosnn2cos(nπ)n2]]+[(π1)[sinnπn]+[cosnπn2cosnn2]]\Rightarrow {a_n} = \left[ { \left( {1 + \pi } \right)\left[ {\dfrac{{\sin \left( { - n\pi } \right)}}{n}} \right] - \left[ {\dfrac{{\cos n}}{{{n^2}}} - \dfrac{{\cos \left( { - n\pi } \right)}}{{{n^2}}}} \right]} \right] + \left[ {\left( {\pi - 1} \right)\left[ {\dfrac{{\sin n\pi }}{n}} \right] + \left[ {\dfrac{{\cos n\pi }}{{{n^2}}} - \dfrac{{\cos n}}{{{n^2}}}} \right]} \right]
an=[(1+π)[sinnπn][cosnn2cosnπn2]]+[(π1)[sinnπn]+[cosnπn2cosnn2]]\Rightarrow {a_n} = \left[ {\left( {1 + \pi } \right)\left[ {\dfrac{{\sin n\pi }}{n}} \right] - \left[ {\dfrac{{\cos n}}{{{n^2}}} - \dfrac{{\cos n\pi }}{{{n^2}}}} \right]} \right] + \left[ {\left( {\pi - 1} \right)\left[ {\dfrac{{\sin n\pi }}{n}} \right] + \left[ {\dfrac{{\cos n\pi }}{{{n^2}}} - \dfrac{{\cos n}}{{{n^2}}}} \right]} \right],
sin(x)=sinx,cos(x)=cosx.\because \sin (-x) = - \sin x, \cos (-x) = \cos x.
Now simplify it we have,
an=sinnπn(1+π+π1)+cosnn2(11)+cosnπn2(1+1)\Rightarrow {a_n} = \dfrac{{\sin n\pi }}{n}\left( {1 + \pi + \pi - 1} \right) + \dfrac{{\cos n}}{{{n^2}}}\left( { - 1 - 1} \right) + \dfrac{{\cos n\pi }}{{{n^2}}}\left( {1 + 1} \right)
an=2πsinnπn2cosnn2+2cosnπn2\Rightarrow {a_n} = 2\pi \dfrac{{\sin n\pi }}{n} - 2\dfrac{{\cos n}}{{{n^2}}} + 2\dfrac{{\cos n\pi }}{{{n^2}}}
Now it is given that n belongs to natural number, so sinnπ=0\sin n\pi = 0 (always)
an=2π0n2cosnn2+2cosnπn2\Rightarrow {a_n} = 2\pi \dfrac{0}{n} - 2\dfrac{{\cos n}}{{{n^2}}} + 2\dfrac{{\cos n\pi }}{{{n^2}}}
an=2n2(cosncosnπ)\Rightarrow {a_n} = - \dfrac{2}{{{n^2}}}\left( {\cos n - \cos n\pi } \right)
Now as we know that cosCcosD=2sin(C+D2)sin(DC2)\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right) so we have,
an=2n2(2sin(n+nπ2)sin(nπn2))\Rightarrow {a_n} = - \dfrac{2}{{{n^2}}}\left( {2\sin \left( {\dfrac{{n + n\pi }}{2}} \right)\sin \left( {\dfrac{{n\pi - n}}{2}} \right)} \right)
an=4n2(sin(n+nπ2)sin(nπn2))\Rightarrow {a_n} = - \dfrac{4}{{{n^2}}}\left( {\sin \left( {\dfrac{{n + n\pi }}{2}} \right)\sin \left( {\dfrac{{n\pi - n}}{2}} \right)} \right)
an=4[sinn(π+12)n][sinn(π12)n]\Rightarrow {a_n} = - 4\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi + 1}}{2}} \right)}}{n}} \right]\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi - 1}}{2}} \right)}}{n}} \right]
The above equation is also written as,
an=4[(π+12)sinn(π+12)n(π+12)][(π12)sinn(π12)n(π12)]\Rightarrow {a_n} = - 4\left[ {\left( {\dfrac{{\pi + 1}}{2}} \right)\dfrac{{\sin n\left( {\dfrac{{\pi + 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi + 1}}{2}} \right)}}} \right]\left[ {\left( {\dfrac{{\pi - 1}}{2}} \right)\dfrac{{\sin n\left( {\dfrac{{\pi - 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi - 1}}{2}} \right)}}} \right]
an=4(π+12)(π12)[sinn(π+12)n(π+12)][sinn(π12)n(π12)]\Rightarrow {a_n} = - 4\left( {\dfrac{{\pi + 1}}{2}} \right)\left( {\dfrac{{\pi - 1}}{2}} \right)\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi + 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi + 1}}{2}} \right)}}} \right]\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi - 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi - 1}}{2}} \right)}}} \right]
an=(π21)[sinn(π+12)n(π+12)][sinn(π12)n(π12)]\Rightarrow {a_n} = - \left( {{\pi ^2} - 1} \right)\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi + 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi + 1}}{2}} \right)}}} \right]\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi - 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi - 1}}{2}} \right)}}} \right], [(a2b2)=(ab)(a+b)]\left[ {\because \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)} \right]
an=(1π2)[sinn(π+12)n(π+12)][sinn(π12)n(π12)]\Rightarrow {a_n} = \left( {1 - {\pi ^2}} \right)\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi + 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi + 1}}{2}} \right)}}} \right]\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi - 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi - 1}}{2}} \right)}}} \right]
Now apply limn\mathop {\lim }\limits_{n \to \infty } on both sides we have,
limnan=limn(1π2)[sinn(π+12)n(π+12)][sinn(π12)n(π12)]\Rightarrow \mathop {\lim }\limits_{n \to \infty } {a_n} = \mathop {\lim }\limits_{n \to \infty } \left( {1 - {\pi ^2}} \right)\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi + 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi + 1}}{2}} \right)}}} \right]\left[ {\dfrac{{\sin n\left( {\dfrac{{\pi - 1}}{2}} \right)}}{{n\left( {\dfrac{{\pi - 1}}{2}} \right)}}} \right]
Now as we know that limnsinxx=0,limn0sinxx=1\mathop {\lim }\limits_{n \to \infty } \dfrac{{\sin x}}{x} = 0,\mathop {\lim }\limits_{n \to 0} \dfrac{{\sin x}}{x} = 1, so use this property we have,
limnan=(1π2)[0][0]\Rightarrow \mathop {\lim }\limits_{n \to \infty } {a_n} = \left( {1 - {\pi ^2}} \right)\left[ 0 \right]\left[ 0 \right]
limnan=0\Rightarrow \mathop {\lim }\limits_{n \to \infty } {a_n} = 0
So this is the required answer.
Hence option (d) is the correct answer.

Note: Whenever we face such types of problems the key concept we have to remember is that always recall the formula of integration by parts which is stated above and also recall the basic integration and differentiation properties such as cosnxdx=sinnxn+C,ddx1=0,ddxx=1\int {\cos nxdx} = \dfrac{{\sin nx}}{n} + C,\dfrac{d}{{dx}}1 = 0,\dfrac{d}{{dx}}x = 1 along with standard limit properties such as limnsinxx=0,limn0sinxx=1\mathop {\lim }\limits_{n \to \infty } \dfrac{{\sin x}}{x} = 0,\mathop {\lim }\limits_{n \to 0} \dfrac{{\sin x}}{x} = 1.