Solveeit Logo

Question

Mathematics Question on Multiplication of a Vector by a Scalar

Let a=i^2j^+3k^a =\hat{ i }-2 \hat{ j }+3 \hat{ k }. If bb is a vector such that ab=b2a \cdot b =| b |^{2} and ab=7| a - b |=\sqrt{7}, then b| b | is equal to

A

7\sqrt{7}

B

3\sqrt{3}

C

7

D

3

Answer

7\sqrt{7}

Explanation

Solution

The correct answer is A:7\sqrt{7}
Given, a=i^2j^+3k^a =\hat{ i }-2 \hat{ j }+3 \hat{ k }
ab=b2a \cdot b =| b |^{2}
and ab=7| a - b |=\sqrt{7}
ab2=7\Rightarrow| a - b |^{2}=7
a2+b22ab=7\Rightarrow| a |^{2}+| b |^{2}-2 a \cdot b =7
(1+4+9)2+b22b2=7\Rightarrow(\sqrt{1+4+9})^{2}+| b |^{2}-2| b |^{2}=7
14b2=7\Rightarrow 14-| b |^{2}=7
b2=7\Rightarrow | b |^{2}=7
b=7\Rightarrow | b |=\sqrt{7}