Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

Let A,G,HA, G, H and SS respectively denote the arithmetic mean, geometric mean, harmonic mean and the sum of the numbers a1,a2,a3.....,ana_1 , a_2 , a_3 ....., a_n . Then the value of at which the function f(x)=k=1n(xak)2f(x) =\displaystyle \sum^n_{k =1} (x -a_k)^2 has minimum is

A

S

B

H

C

G

D

A

Answer

A

Explanation

Solution

Given function f(x)=k=1n(xak)2f(x)=\displaystyle \sum_{k=1}^{n}\left(x-a_{k}\right)^{2} =k=1n(x22xak+ak2)=\displaystyle \sum_{k=1}^{n}\left(x^{2}-2 x a_{k}+a_{k}^{2}\right) =nx22x(a1+a2+a3+an)=n x^{2}-2 x\left(a_{1}+a_{2}+a_{3}+\ldots a_{n}\right) +(a12+a22++an2)+\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right) \because The quadratic expression ax2+bx+ca x^{2}+b x +c has its minimum value at x=b2ax=-\frac{b}{2 a}. f(x)\therefore f(x) has it's minimum value at x=2(a1+a2+a3++an)2nx=-\frac{-2\left(a_{1}+a_{2}+a_{3}+\ldots+a_{n}\right)}{2 n} =a1+a2+a3++annx=A=\frac{a_{1}+a_{2}+a_{3}+\ldots+a_{n}}{n} \Rightarrow x=A