Solveeit Logo

Question

Question: Let a function f(x) be defined as f(x) =\(\left\{ \begin{matrix} \sin^{- 1}\lambda + x^{2}; & 0 < x...

Let a function f(x) be defined as

f(x) ={sin1λ+x2;0<x<12x;x1 \left\{ \begin{matrix} \sin^{- 1}\lambda + x^{2}; & 0 < x < 1 \\ & \\ 2x; & x \geq 1 \end{matrix} \right.\

f(x) can have local minimum at x = 1 if the value of l lies in the interval –

A

[sin 1, 1]

B

(– sin 1, 1)

C

(sin 1, 1]

D

[0, sin 1]

Answer

(sin 1, 1]

Explanation

Solution

For local minimum at x = 1, the graph should be

Hence 1 + sin–1 l > 2

̃ sin–1 l > 1

̃ l Î (sin 1, 1]