Question
Mathematics Question on Functions
Let a function f: ℝ → ℝ be defined as :
\begin{array}{l}f(x) = \left\\{\begin{matrix}\int_{0}^{x}(5-|t-3|)dt, & x>4 \\\x^2 + bx, & x \le4 \\\\\end{matrix}\right.\end{array}
where b ∈ ℝ. If f is continuous at x = 4 then which of the following statements is NOT true?
f is not differentiable at x = 4
f′(3)+f′(5)=435
f is increasing in (-∞, 81)∪(8,∞)
f has local minima at x = 81
f is increasing in (-∞, 81)∪(8,∞)
Solution
∵f(x)is continuous at x=4⇒f(4−)=f(4+)
⇒16+4b=∫04(5−∣t−3∣)dt
=∫03(2+t)dt+∫34(8−t)dt
=2t+2t2)03+8t–3t2]34
=6+29−0+(32−8)−(24−29)
16 + 4 b = 15
⇒b=4−1
\begin{array}{l}\Rightarrow f(x) = \left\\{\begin{matrix}\int_{0}^{x}5-|t-3|dt & x>4 \\\x^2-\frac{x}{4} & x\le 4 \\\\\end{matrix}\right.\end{array}
\begin{array}{l}\Rightarrow f'(x) = \left\\{\begin{matrix}5-|x-3| & x>4 \\\2x-\frac{1}{4} & x\le 4 \\\\\end{matrix}\right.\end{array}
\begin{array}{l}\Rightarrow f'(x) = \left\\{\begin{matrix}8-x & x>4 \\\2x-\frac{1}{4} & x\le 4 \\\\\end{matrix}\right.\end{array}
f′(x)<0⇒x∈(−∞,81)∪(8,∞)
f′(3)+f′(5)=6−41=435
f′(x)=0⇒x=81 have local minima
∴(C)is only incorrect option