Solveeit Logo

Question

Question: Let a focal chord of the parabola \({{y}^{2}}=16x\) cuts it at points \(\left( f,g \right)\) and \(\...

Let a focal chord of the parabola y2=16x{{y}^{2}}=16x cuts it at points (f,g)\left( f,g \right) and (h,k)\left( h,k \right). Then f.hf.h is:
A. -8
B. -16
C. 16
D. None of these

Explanation

Solution

We here need to find f.hf.h , i.e. the product of the x-coordinates of the extremities of the focal chord of the given parabola. For this, we will first write the given coordinates in the parametric form and, i.e. (at12,2at1)\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right) and (at22,2at2)\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right) and hence write the product in the parametric form. Then we will use the property of t1t2=1{{t}_{1}}{{t}_{2}}=-1 where t1{{t}_{1}} and t2{{t}_{2}} are the parameters for the extremities of the focal chord. We will then put this value in the required product and hence we will get our result.

Complete step-by-step solution
Now, we have been given the two points the focal chord of the parabola y2=16x{{y}^{2}}=16x passes through. A focal chord of a parabola is the chord, which passes through its focus.

The parabola y2=16x{{y}^{2}}=16x is in the form of y2=4ax{{y}^{2}}=4ax where the focus is (a,0)\left( a,0 \right) . thus, we can write the given parabola as:
y2=16x y2=4.4x \begin{aligned} & {{y}^{2}}=16x \\\ & \Rightarrow {{y}^{2}}=4.4x \\\ \end{aligned}
Thus, for the given parabola, a=4a=4
Now, any point on a parabola y2=4ax{{y}^{2}}=4ax is given by (at2,2at)\left( a{{t}^{2}},2at \right) where ‘t’ is a parameter.
As mentioned above, here a=4a=4
Thus, we can take the given points (f,g)\left( f,g \right) and (h,k)\left( h,k \right) as (4t12,8t1)\left( 4{{t}_{1}}^{2},8{{t}_{1}} \right) and (4t22,8t2)\left( 4{{t}_{2}}^{2},8{{t}_{2}} \right) respectively where t1'{{t}_{1}}' and t2'{{t}_{2}}' are two different parameters.
Thus, we get:
f=4t12f=4{{t}_{1}}^{2}
h=4t22h=4{{t}_{2}}^{2}
So we can get f.hf.h as by multiplying these both.
Thus, we get:
f.h=4t12.4t22 f.h=16t12t22 \begin{aligned} & f.h=4{{t}_{1}}^{2}.4{{t}_{2}}^{2} \\\ & \Rightarrow f.h=16{{t}_{1}}^{2}{{t}_{2}}^{2} \\\ \end{aligned}
f.h=16(t1t2)2\Rightarrow f.h=16{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}} ……(i)
Now, we know that if the focal chord of a parabola of the type y2=4ax{{y}^{2}}=4ax passes through the points (at12,2at1)\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right) and (at22,2at2)\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right) then the relation between the points is given by:
t1t2=1{{t}_{1}}{{t}_{2}}=-1
Thus, by putting this value, we can find the value of f.hf.h
Now, putting this value in equation (i) we get:
f.h=16(t1t2)2 f.h=16(1)2 f.h=16(1) f.h=16 \begin{aligned} & f.h=16{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}} \\\ & \Rightarrow f.h=16{{\left( -1 \right)}^{2}} \\\ & \Rightarrow f.h=16\left( 1 \right) \\\ & \Rightarrow f.h=16 \\\ \end{aligned}
Thus option (C) is the correct option.

Note: We have obtained the result t1t2=1{{t}_{1}}{{t}_{2}}=-1 by the following method:
In the given figure, we have a parabola y2=4ax{{y}^{2}}=4ax with the focus at S. The extremities of the chord are P and Q.

Let the point P be (at12,2at1)\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right) and let the point Q be (at22,2at2)\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right).
Hence, the equation through point P and Q will be:
y2at1=2at22at1at22at12(xat12) y2at1=2t2+t1(xat12) \begin{aligned} & y-2a{{t}_{1}}=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{a{{t}_{2}}^{2}-a{{t}_{1}}^{2}}\left( x-a{{t}_{1}}^{2} \right) \\\ & y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-a{{t}_{1}}^{2} \right) \\\ \end{aligned}
Now, this line passes through the focus, i.e. S (a,0)
Putting this point in the equation of the chord we get:

& y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-a{{t}_{1}}^{2} \right) \\\ & \Rightarrow 0-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( a-a{{t}_{1}}^{2} \right) \\\ & \Rightarrow -2a{{t}_{1}}=\dfrac{2a}{{{t}_{2}}+{{t}_{1}}}\left( 1-{{t}_{1}}^{2} \right) \\\ & \Rightarrow -{{t}_{1}}=\dfrac{1-{{t}_{1}}^{2}}{{{t}_{2}}+{{t}_{1}}} \\\ & \Rightarrow -{{t}_{1}}{{t}_{2}}-{{t}_{1}}^{2}=1-{{t}_{1}}^{2} \\\ & \Rightarrow -{{t}_{1}}{{t}_{2}}=1-{{t}_{1}}^{2}+{{t}_{1}}^{2} \\\ & \Rightarrow -{{t}_{1}}{{t}_{2}}=1 \\\ & \Rightarrow {{t}_{1}}{{t}_{2}}=-1 \\\ \end{aligned}$$