Solveeit Logo

Question

Mathematics Question on Area between Two Curves

Let a curve y = y(x) pass through the point (3, 3) and the area of the region under this curve, above the x-axis and between the abscissae 3 and
x(>3) be (yx)3x(>3)\ be\ (\frac{y}{x})^3
. If this curve also passes through the point (α,6√10) in the first quadrant, then α is equal to _______.

Answer

3xf(x)dx=(f(x)x)3\int_{3}^{x} \, f(x) \,dx = \left(\frac{f(x)}{x}\right)^3
x33xf(x)dx=f3(x)x^3 \cdot \int_{3}^{x} f(x) \,dx = f^3(x)
Differentiate w.r.t. x
x3f(x)+3x2.f3(x)x3=3f2(x)f(x)x^3 f(x) +3x^2. \frac{f^3(x)}{x^3} = 3f^2(x)f'(x)
⇒$$3y^2 \frac{dy}{dx} = x^3y + \frac{3y^3}{x}
3xydydx=x4+3y23xy \frac{dy}{dx}=x^4+3y^2
Let y 2 = t
32dtdx=x3+3tx\frac{3}{2} \frac{dt}{dx} = x^3 + \frac{3t}{x}
dtdx2tx=2x33\frac{dt}{dx} - \frac{2t}{x} = \frac{2x^3}{3}
IF=e2xdx=1x2IF=e^{\int−\frac{2}{x} dx}=\frac{1}{x^2}
Solution of differential equation
t1x2=23x dxt⋅\frac{1}{x^2}=\int\frac{2}{3}x\ dx
y2x2=x23+C\frac{y^2}{x^2}=\frac{x^2}{3}+C
y2=x43+Cx2y^2=\frac{x^4}{3}+Cx^2
Curve passes through(3,3)
C=2⇒C=–2
y2=x432x2y^2=\frac{x^4}{3}−2x^2
Which passes through(α,610) (α, 6\sqrt10)
α46α23=360\frac{α^4−6α^2}{3}=360
α46α21080=0α^4−6α^2−1080=0
α=6
So, the correct answer is 6.