Solveeit Logo

Question

Question: Let a complex number z=x+ iy satisfies equation |z|4−16|z|2−3z2−3zˉ2+9=0. If a and b are the maximum...

Let a complex number z=x+ iy satisfies equation |z|4−16|z|2−3z2−3zˉ2+9=0. If a and b are the maximum and minimum value of |z| then ab is equal to _______.

Answer

3

Explanation

Solution

We start with the complex number written in polar form:

z=reiθwith r=zz=r e^{i\theta} \quad \text{with } r=|z|

Then

z2=r2e2iθandzˉ2=r2e2iθ.z^2=r^2e^{2i\theta}\quad \text{and}\quad \bar{z}^2=r^2e^{-2i\theta}.

Given the equation

z416z23z23zˉ2+9=0,|z|^4-16|z|^2-3z^2-3\bar{z}^2+9=0,

substitute zz in polar form:

r416r23r2(e2iθ+e2iθ)+9=0.r^4-16r^2-3r^2\left(e^{2i\theta}+e^{-2i\theta}\right)+9=0.

Since

e2iθ+e2iθ=2cos2θ,e^{2i\theta}+e^{-2i\theta}=2\cos2\theta,

the equation becomes

r416r26r2cos2θ+9=0.r^4-16r^2-6r^2\cos2\theta+9=0.

Rearrange:

r4r2(16+6cos2θ)+9=0.r^4 - r^2(16+6\cos2\theta) +9=0.

For any real zz, there must exist some θ\theta so that this equation holds. We isolate cos2θ\cos2\theta:

cos2θ=r416r2+96r2.\cos2\theta=\frac{r^4-16r^2+9}{6r^2}.

For a solution to exist, we require

r416r2+96r21.\left|\frac{r^4-16r^2+9}{6r^2}\right|\le1.

This leads to two inequalities:

r416r2+96r21r416r2+96r2r422r2+90.\frac{r^4-16r^2+9}{6r^2}\le1 \quad \Rightarrow \quad r^4-16r^2+9\le6r^2 \quad\Rightarrow\quad r^4-22r^2+9\le0.

Let u=r2u=r^2; then:

u222u+90.u^2-22u+9\le0.

The quadratic equation u222u+9=0u^2-22u+9=0 has roots:

u=11±47.u=11\pm4\sqrt{7}.

Thus,

1147r211+47.11-4\sqrt{7}\le r^2\le11+4\sqrt{7}.
r416r2+96r21r416r2+96r2r410r2+90.\frac{r^4-16r^2+9}{6r^2}\ge-1 \quad \Rightarrow \quad r^4-16r^2+9\ge -6r^2 \quad\Rightarrow\quad r^4-10r^2+9\ge0.

Again, with u=r2u=r^2:

u210u+90.u^2-10u+9\ge0.

The roots of u210u+9=0u^2-10u+9=0 are:

u=1andu=9.u=1 \quad \text{and} \quad u=9.

Thus,

u1oru9,i.e., r21 or r29.u\le1 \quad \text{or} \quad u\ge9,\quad \text{i.e., } r^2\le1 \text{ or } r^2\ge9.

For both conditions to hold, r2r^2 must lie in

[1147,1]or[9,11+47].[11-4\sqrt{7},\,1] \quad \text{or}\quad [9,\,11+4\sqrt{7}].

Since 11470.41711-4\sqrt{7}\approx 0.417 and 11+4721.58311+4\sqrt{7}\approx 21.583, the available values of rr form two intervals:

r[1147,1]andr[3,11+47],r\in\left[\sqrt{11-4\sqrt{7}},\,1\right] \quad \text{and} \quad r\in\left[3,\,\sqrt{11+4\sqrt{7}}\right],

where 1=11=\sqrt{1} and 3=93=\sqrt{9}.

Thus, the minimum possible z|z| is

b=1147b=\sqrt{11-4\sqrt{7}}

and the maximum is

a=11+47.a=\sqrt{11+4\sqrt{7}}.

Their product is:

ab=(11+47)(1147)=121167=121112=9=3.ab=\sqrt{(11+4\sqrt{7})(11-4\sqrt{7})}=\sqrt{121-16\cdot7}=\sqrt{121-112}=\sqrt{9}=3.