Question
Question: Let a complex number z=x+ iy satisfies equation |z|4−16|z|2−3z2−3zˉ2+9=0. If a and b are the maximum...
Let a complex number z=x+ iy satisfies equation |z|4−16|z|2−3z2−3zˉ2+9=0. If a and b are the maximum and minimum value of |z| then ab is equal to _______.
3
Solution
We start with the complex number written in polar form:
z=reiθwith r=∣z∣Then
z2=r2e2iθandzˉ2=r2e−2iθ.Given the equation
∣z∣4−16∣z∣2−3z2−3zˉ2+9=0,substitute z in polar form:
r4−16r2−3r2(e2iθ+e−2iθ)+9=0.Since
e2iθ+e−2iθ=2cos2θ,the equation becomes
r4−16r2−6r2cos2θ+9=0.Rearrange:
r4−r2(16+6cos2θ)+9=0.For any real z, there must exist some θ so that this equation holds. We isolate cos2θ:
cos2θ=6r2r4−16r2+9.For a solution to exist, we require
6r2r4−16r2+9≤1.This leads to two inequalities:
Let u=r2; then:
u2−22u+9≤0.The quadratic equation u2−22u+9=0 has roots:
u=11±47.Thus,
11−47≤r2≤11+47.Again, with u=r2:
u2−10u+9≥0.The roots of u2−10u+9=0 are:
u=1andu=9.Thus,
u≤1oru≥9,i.e., r2≤1 or r2≥9.For both conditions to hold, r2 must lie in
[11−47,1]or[9,11+47].Since 11−47≈0.417 and 11+47≈21.583, the available values of r form two intervals:
r∈[11−47,1]andr∈[3,11+47],where 1=1 and 3=9.
Thus, the minimum possible ∣z∣ is
b=11−47and the maximum is
a=11+47.Their product is:
ab=(11+47)(11−47)=121−16⋅7=121−112=9=3.