Question
Mathematics Question on Coordinate Geometry
Let a circle passing through (2, 0) have its centre at the point (h,k). Let (xc,yc) be the point of intersection of the lines 3x+5y=1 and (2+c)x+5c2y=1. If h=limc→1xc and k=limc→1yc, then the equation of the circle is:
25x2+25y2−20x+2y−60=0
5x2+5y2−4x−2y−12=0
25x2+25y2−2x+2y−60=0
5x2+5y2−4x+2y−12=0
25x2+25y2−20x+2y−60=0
Solution
Let the circle pass through the point (2,0) with its center at (h,k). The point of intersection of the lines 3x+5y=1and(2+c)x+5c2y=1 is given as (xc,yc), where: x=2+c−3c21−c2,y=5(2+c−3c2)1−3c.
Step 1: Limits of h and k
h=limc→1x=limc→1(1−c)(2+3c)(1−c)(1+c)=52,
k=limc→1y=limc→1−5(c−1)(3c+2)c−1=−251.
Thus, the center of the circle is: (52,−251).
Step 2: Radius of the circle
Using the distance formula, the radius is:
r=(2−52)2+(0−(−251))2.
Simplify:
r=(510−52)2+(251)2=(58)2+(251)2.
r=2564+6251=6251600+1=6251601=251601.
Step 3: Equation of the circle
The general equation of the circle is:
(x−52)2+(y+251)2=(251601)2.
Simplify:
(x−52)2+(y+251)2=6251601.
Multiply through by 625:
25(x−52)2+25(y+251)2=1601.
Expand:
25x2−20x+4+25y2+2y+251=1601.
Simplify:
25x2+25y2−20x+2y−60=0.
Final Answer:
25x2+25y2−20x+2y−60=0.