Solveeit Logo

Question

Mathematics Question on Tangents and Normals

Let a circle C1C_1 be obtained on rolling the circle x2+y24x6y+11=0x^2+y^2-4 x-6 y+11=0 upwards 4 units on the tangent TT to it at the point (3,2)(3,2) Let C2C_2 be the image of C1C_1 in TT Let AA and BB be the centers of circles C1C_1 and C2C_2 respectively, and MM and NN be respectively the feet of perpendiculars drawn from AA and BB on the xx-axis. Then the area of the trapezium AMNB is:

A

2(2+2)2(2+\sqrt{2})

B

2(1+2)2(1+\sqrt{2})

C

4(1+2)4(1+\sqrt{2})

D

3+223+2 \sqrt{2}

Answer

4(1+2)4(1+\sqrt{2})

Explanation

Solution

The correct answer is (C) : 4(1+2)4(1+\sqrt2)
Graph
C=(2,3),r=2C=(2,3),r=\sqrt2​
Centre of G=A=2+42​​,=2+\frac{\sqrt4}2​​,
3+42=(2+22,3+22)3+\frac{\sqrt4}{2}​=(2+2\sqrt2​,3+2\sqrt2​)
A(2+22,3+22)A(2+2\sqrt2​,3+2\sqrt2​)
B(4+22,1+22)B(4+2\sqrt2​,1+2\sqrt2​)
x(2+22)1=y(3+22)1=2\frac{x−(2+2\sqrt2​)​}{1}=\frac{y−(3+2\sqrt2​)​}{-1}=2
∴ area of trapezium:
=12(4+42)2=\frac{1}{2}​(4+4\sqrt2​)2
=4(1+2)=4(1+\sqrt2)