Solveeit Logo

Question

Question: Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$ be a matrix. If $A^6 = \begin{pmatrix} p & q ...

Let A=(2103)A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} be a matrix. If A6=(pqrs)A^6 = \begin{pmatrix} p & q \\ r & s \end{pmatrix}, then

A

number of factors common to 'p' and 's' is 1.

B

number of factors of (p+q) is 7.

C

(p+q+r+s) is an even integer.

D

the sum of the proper divisors of (p+q+r+s) is 1820.

Answer

(A), (B), (C)

Explanation

Solution

First, we calculate A6A^6. We observe a pattern in the powers of A:

An=(2n3n2n03n)A^n = \begin{pmatrix} 2^n & 3^n - 2^n \\ 0 & 3^n \end{pmatrix}.

Thus, A6=(263626036)=(646650729)A^6 = \begin{pmatrix} 2^6 & 3^6 - 2^6 \\ 0 & 3^6 \end{pmatrix} = \begin{pmatrix} 64 & 665 \\ 0 & 729 \end{pmatrix}.

So, p=64p=64, q=665q=665, r=0r=0, s=729s=729.

(A) The factors of p=64=26p=64=2^6 are powers of 2, and the factors of s=729=36s=729=3^6 are powers of 3. The only common factor is 1.

(B) p+q=64+665=729=36p+q = 64+665 = 729 = 3^6. The number of factors of 363^6 is 6+1=76+1 = 7.

(C) p+q+r+s=64+665+0+729=1458p+q+r+s = 64+665+0+729 = 1458, which is an even integer.

(D) p+q+r+s=1458=2×36p+q+r+s = 1458 = 2 \times 3^6. The sum of all divisors of 1458 is σ(1458)=(1+2)(1+3+32+33+34+35+36)=3×1093=3279\sigma(1458) = (1+2)(1+3+3^2+3^3+3^4+3^5+3^6) = 3 \times 1093 = 3279. The sum of the proper divisors is 32791458=18213279 - 1458 = 1821, not 1820.

Therefore, options (A), (B), and (C) are correct.