Solveeit Logo

Question

Question: Let $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ 1 & 1 & 3 \end{pmatrix}$. If B = adj. A, C = A$...

Let

A=(101022113)A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ 1 & 1 & 3 \end{pmatrix}. If B = adj. A, C = A1^{-1} and

N=adj.BCN = \frac{|adj. B|}{|C|} then the sum of all the divisors of 'N' which are divisible by 6 is

A

45012

B

15246

C

22506

D

11253

Answer

22506

Explanation

Solution

Let A=(101022113)A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ 1 & 1 & 3 \end{pmatrix}. We are given B=adj. AB = \text{adj. A} and C=A1C = A^{-1}. We need to calculate N=adj. BCN = \frac{|\text{adj. B}|}{|C|}.

First, let's find the determinant of matrix A, denoted by A|A|. A=101022113|A| = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ 1 & 1 & 3 \end{vmatrix} Expanding along the first row: A=1221300213+(1)0211|A| = 1 \cdot \begin{vmatrix} 2 & 2 \\ 1 & 3 \end{vmatrix} - 0 \cdot \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 0 & 2 \\ 1 & 1 \end{vmatrix} A=1(2321)0+(1)(0121)|A| = 1 \cdot (2 \cdot 3 - 2 \cdot 1) - 0 + (-1) \cdot (0 \cdot 1 - 2 \cdot 1) A=(62)(02)=4(2)=4+2=6|A| = (6 - 2) - (0 - 2) = 4 - (-2) = 4 + 2 = 6. So, A=6|A| = 6.

For a square matrix A of order nn, we have the following properties:

  1. adj. A=An1|\text{adj. A}| = |A|^{n-1}
  2. A1=1A|A^{-1}| = \frac{1}{|A|}
  3. adj. (adj. A)=An2A\text{adj. (adj. A)} = |A|^{n-2} A
  4. adj. (adj. A)=An2A=(An2)nA=An(n2)+1=An22n+1=A(n1)2|\text{adj. (adj. A)}| = ||A|^{n-2} A| = (|A|^{n-2})^n |A| = |A|^{n(n-2)+1} = |A|^{n^2-2n+1} = |A|^{(n-1)^2}

In this problem, the order of matrix A is n=3n=3. B=adj. AB = \text{adj. A}, so adj. B=adj. (adj. A)|\text{adj. B}| = |\text{adj. (adj. A)}|. Using property 4 with n=3n=3: adj. (adj. A)=A(31)2=A4|\text{adj. (adj. A)}| = |A|^{(3-1)^2} = |A|^4.

C=A1C = A^{-1}. Using property 2: C=A1=1A|C| = |A^{-1}| = \frac{1}{|A|}.

Now we can calculate N: N=adj. BC=A41/A=A4A=A5N = \frac{|\text{adj. B}|}{|C|} = \frac{|A|^4}{1/|A|} = |A|^4 \cdot |A| = |A|^5. Since A=6|A| = 6, we have N=65N = 6^5.

We need to find the sum of all divisors of N=65N = 6^5 which are divisible by 6. First, find the prime factorization of N: N=65=(2×3)5=25×35N = 6^5 = (2 \times 3)^5 = 2^5 \times 3^5.

A divisor of N is of the form d=2a×3bd = 2^a \times 3^b, where 0a50 \le a \le 5 and 0b50 \le b \le 5. A divisor dd is divisible by 6 if it is divisible by both 2 and 3. This means the exponent of 2 in its prime factorization must be at least 1, and the exponent of 3 must be at least 1. So, the divisors of N divisible by 6 are of the form 2a×3b2^a \times 3^b, where 1a51 \le a \le 5 and 1b51 \le b \le 5.

The sum of these divisors is the sum of all terms 2a×3b2^a \times 3^b for a{1,2,3,4,5}a \in \{1, 2, 3, 4, 5\} and b{1,2,3,4,5}b \in \{1, 2, 3, 4, 5\}. This sum can be factored as the product of two sums: Sum =(a=152a)×(b=153b)= \left( \sum_{a=1}^{5} 2^a \right) \times \left( \sum_{b=1}^{5} 3^b \right).

Calculate the first sum: a=152a=21+22+23+24+25\sum_{a=1}^{5} 2^a = 2^1 + 2^2 + 2^3 + 2^4 + 2^5. This is a geometric series with first term 2, common ratio 2, and 5 terms. Sum =2(251)21=2(321)1=2×31=62= \frac{2(2^5 - 1)}{2 - 1} = \frac{2(32 - 1)}{1} = 2 \times 31 = 62.

Calculate the second sum: b=153b=31+32+33+34+35\sum_{b=1}^{5} 3^b = 3^1 + 3^2 + 3^3 + 3^4 + 3^5. This is a geometric series with first term 3, common ratio 3, and 5 terms. Sum =3(351)31=3(2431)2=3×2422=3×121=363= \frac{3(3^5 - 1)}{3 - 1} = \frac{3(243 - 1)}{2} = \frac{3 \times 242}{2} = 3 \times 121 = 363.

The sum of all divisors of N divisible by 6 is the product of these two sums: Sum =62×363= 62 \times 363. 62×363=62×(300+60+3)=62×300+62×60+62×362 \times 363 = 62 \times (300 + 60 + 3) = 62 \times 300 + 62 \times 60 + 62 \times 3 =18600+3720+186= 18600 + 3720 + 186 =22320+186=22506= 22320 + 186 = 22506.

The sum of all divisors of 'N' which are divisible by 6 is 22506.

Comparing this value with the given options: (A) 45012 (B) 15246 (C) 22506 (D) 11253

The calculated sum matches option (C).

The final answer is 22506\boxed{22506}.

Solution:

  1. Calculate the determinant of matrix A: A=6|A| = 6.
  2. Determine the value of N using the properties of determinants of adjoint and inverse matrices: N=adj. BC=adj. (adj. A)A1N = \frac{|\text{adj. B}|}{|C|} = \frac{|\text{adj. (adj. A)}|}{|A^{-1}|}. For a 3x3 matrix A, adj. (adj. A)=A4|\text{adj. (adj. A)}| = |A|^4 and A1=1A|A^{-1}| = \frac{1}{|A|}. Thus, N=A41/A=A5=65N = \frac{|A|^4}{1/|A|} = |A|^5 = 6^5.
  3. Find the prime factorization of N: N=65=25×35N = 6^5 = 2^5 \times 3^5.
  4. Identify the form of divisors of N that are divisible by 6. These are divisors d=2a×3bd = 2^a \times 3^b where 1a51 \le a \le 5 and 1b51 \le b \le 5.
  5. Calculate the sum of these divisors. The sum is given by the product of the sum of powers of 2 from 212^1 to 252^5 and the sum of powers of 3 from 313^1 to 353^5. Sum of powers of 2: a=152a=2+4+8+16+32=62\sum_{a=1}^{5} 2^a = 2+4+8+16+32 = 62. Sum of powers of 3: b=153b=3+9+27+81+243=363\sum_{b=1}^{5} 3^b = 3+9+27+81+243 = 363.
  6. The required sum is the product of these two sums: 62×363=2250662 \times 363 = 22506.

The final answer is 22506\boxed{22506}.