Solveeit Logo

Question

Question: Let A = \(\begin{bmatrix} x^{2} & 6 & 0 \\ 1 & –5 & 1 \\ 2 & 0 & x \end{bmatrix}\) and B = \(\begin{...

Let A = [x26015120x]\begin{bmatrix} x^{2} & 6 & 0 \\ 1 & –5 & 1 \\ 2 & 0 & x \end{bmatrix} and B = [400010008]\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8 \end{bmatrix}. If a function is defined as f(x) = tr (AB), then 3dxf(x)\int_{}^{}\frac{3dx}{f(x)} is equal to Q

A

14ln2x12x+5+C\frac{1}{4}\mathcal{l}n\left| \frac{2x - 1}{2x + 5} \right| + C

B

14ln2x+52x1+C\frac{1}{4}\mathcal{l}n\left| \frac{2x + 5}{2x - 1} \right| + C

C

13ln12x2x+5+C\frac{1}{3}\mathcal{l}n\left| \frac{1 - 2x}{2x + 5} \right| + C

D

13ln12x2x+3+C\frac{1}{3}\mathcal{l}n\left| \frac{1 - 2x}{2x + 3} \right| + C

Answer

14ln2x12x+5+C\frac{1}{4}\mathcal{l}n\left| \frac{2x - 1}{2x + 5} \right| + C

Explanation

Solution

AB =[4x260458808x]\begin{bmatrix} 4x^{2} & 6 & 0 \\ 4 & –5 & 8 \\ 8 & 0 & 8x \end{bmatrix}

̃ f(x) = tr(AB) = 4x2 + 8x – 5

\ 3dx4x2+8x5\int_{}^{}\frac{3dx}{4x^{2} + 8x - 5} = 3dx(2x+5)(2x1)\int_{}^{}\frac{3dx}{(2x + 5)(2x - 1)}

= 12(1(2x1)1(2x+5))dx\frac{1}{2}\int_{}^{}\left( \frac{1}{(2x - 1)} - \frac{1}{(2x + 5)} \right)dx = 14ln2x12x+5+C\frac{1}{4}\mathcal{l}n\left| \frac{2x - 1}{2x + 5} \right| + C