Question
Question: Let A = \(\begin{bmatrix} x^{2} & 6 & 0 \\ 1 & –5 & 1 \\ 2 & 0 & x \end{bmatrix}\) and B = \(\begin{...
Let A = x2126–5001x and B = 400010008. If a function is defined as f(x) = tr (AB), then ∫f(x)3dx is equal to Q
A
41ln2x+52x−1+C
B
41ln2x−12x+5+C
C
31ln2x+51−2x+C
D
31ln2x+31−2x+C
Answer
41ln2x+52x−1+C
Explanation
Solution
AB =4x2486–50088x
̃ f(x) = tr(AB) = 4x2 + 8x – 5
\ ∫4x2+8x−53dx = ∫(2x+5)(2x−1)3dx
= 21∫((2x−1)1−(2x+5)1)dx = 41ln2x+52x−1+C