Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} x & 3 & 5 \\ 2 & x & 7 \\ x & 3 & x \end{bmatrix}$ be a matrix where x is a...

Let A=[x352x7x3x]A = \begin{bmatrix} x & 3 & 5 \\ 2 & x & 7 \\ x & 3 & x \end{bmatrix} be a matrix where x is an integer. If det(adj(adjA)) = 646^4 then number of possible values of x is

A

0

B

1

C

2

D

more than 3

Answer

2

Explanation

Solution

The given matrix is A=[x352x7x3x]A = \begin{bmatrix} x & 3 & 5 \\ 2 & x & 7 \\ x & 3 & x \end{bmatrix}. The order of the matrix is n=3n=3. We are given that det(adj(adjA))=64\det(\text{adj}(\text{adj}A)) = 6^4.

For a square matrix AA of order nn, the determinant of the adjugate of the adjugate of AA is given by the property: det(adj(adjA))=(detA)(n1)2\det(\text{adj}(\text{adj}A)) = (\det A)^{(n-1)^2}

In this case, n=3n=3, so the formula becomes: det(adj(adjA))=(detA)(31)2=(detA)22=(detA)4\det(\text{adj}(\text{adj}A)) = (\det A)^{(3-1)^2} = (\det A)^{2^2} = (\det A)^4.

We are given det(adj(adjA))=64\det(\text{adj}(\text{adj}A)) = 6^4. So, we have (detA)4=64(\det A)^4 = 6^4. This equation implies detA=±6\det A = \pm 6.

Now, we need to calculate the determinant of the matrix AA in terms of xx. detA=det[x352x7x3x]\det A = \det \begin{bmatrix} x & 3 & 5 \\ 2 & x & 7 \\ x & 3 & x \end{bmatrix} Expanding along the first row: detA=xx73x327xx+52xx3\det A = x \begin{vmatrix} x & 7 \\ 3 & x \end{vmatrix} - 3 \begin{vmatrix} 2 & 7 \\ x & x \end{vmatrix} + 5 \begin{vmatrix} 2 & x \\ x & 3 \end{vmatrix} detA=x(xx73)3(2x7x)+5(23xx)\det A = x(x \cdot x - 7 \cdot 3) - 3(2 \cdot x - 7 \cdot x) + 5(2 \cdot 3 - x \cdot x) detA=x(x221)3(2x7x)+5(6x2)\det A = x(x^2 - 21) - 3(2x - 7x) + 5(6 - x^2) detA=x321x3(5x)+305x2\det A = x^3 - 21x - 3(-5x) + 30 - 5x^2 detA=x321x+15x+305x2\det A = x^3 - 21x + 15x + 30 - 5x^2 detA=x35x26x+30\det A = x^3 - 5x^2 - 6x + 30

We have two possible cases for detA\det A:

Case 1: detA=6\det A = 6 x35x26x+30=6x^3 - 5x^2 - 6x + 30 = 6 x35x26x+24=0x^3 - 5x^2 - 6x + 24 = 0 We are looking for integer solutions for xx. We can test integer divisors of 24 as potential roots. Let P(x)=x35x26x+24P(x) = x^3 - 5x^2 - 6x + 24. P(2)=235(22)6(2)+24=85(4)12+24=82012+24=0P(2) = 2^3 - 5(2^2) - 6(2) + 24 = 8 - 5(4) - 12 + 24 = 8 - 20 - 12 + 24 = 0. So, x=2x=2 is an integer root. We can factor the polynomial using synthetic division or polynomial division. Dividing x35x26x+24x^3 - 5x^2 - 6x + 24 by (x2)(x-2):

2 | 1  -5  -6   24
  |    2  -6  -24
  ----------------
    1  -3  -12   0

The quotient is x23x12x^2 - 3x - 12. So, the equation is (x2)(x23x12)=0(x-2)(x^2 - 3x - 12) = 0. The roots are x=2x=2 or x23x12=0x^2 - 3x - 12 = 0. For the quadratic equation x23x12=0x^2 - 3x - 12 = 0, the discriminant is Δ=(3)24(1)(12)=9+48=57\Delta = (-3)^2 - 4(1)(-12) = 9 + 48 = 57. Since 57 is not a perfect square, the roots x=3±572x = \frac{3 \pm \sqrt{57}}{2} are not integers. Thus, the only integer solution from Case 1 is x=2x=2.

Case 2: detA=6\det A = -6 x35x26x+30=6x^3 - 5x^2 - 6x + 30 = -6 x35x26x+36=0x^3 - 5x^2 - 6x + 36 = 0 We are looking for integer solutions for xx. We can test integer divisors of 36 as potential roots. Let Q(x)=x35x26x+36Q(x) = x^3 - 5x^2 - 6x + 36. Q(3)=335(32)6(3)+36=275(9)18+36=274518+36=6363=0Q(3) = 3^3 - 5(3^2) - 6(3) + 36 = 27 - 5(9) - 18 + 36 = 27 - 45 - 18 + 36 = 63 - 63 = 0. So, x=3x=3 is an integer root. We can factor the polynomial using synthetic division or polynomial division. Dividing x35x26x+36x^3 - 5x^2 - 6x + 36 by (x3)(x-3):

3 | 1  -5  -6   36
  |    3  -6  -36
  ----------------
    1  -2  -12   0

The quotient is x22x12x^2 - 2x - 12. So, the equation is (x3)(x22x12)=0(x-3)(x^2 - 2x - 12) = 0. The roots are x=3x=3 or x22x12=0x^2 - 2x - 12 = 0. For the quadratic equation x22x12=0x^2 - 2x - 12 = 0, the discriminant is Δ=(2)24(1)(12)=4+48=52\Delta = (-2)^2 - 4(1)(-12) = 4 + 48 = 52. Since 52 is not a perfect square, the roots x=2±522=2±2132=1±13x = \frac{2 \pm \sqrt{52}}{2} = \frac{2 \pm 2\sqrt{13}}{2} = 1 \pm \sqrt{13} are not integers. Thus, the only integer solution from Case 2 is x=3x=3.

The possible integer values of xx for which det(adj(adjA))=64\det(\text{adj}(\text{adj}A)) = 6^4 are x=2x=2 and x=3x=3. The number of possible values of xx is 2.

The final answer is 2\boxed{2}.

Explanation of the solution:

  1. Use the property det(adj(adjA))=(detA)(n1)2\det(\text{adj}(\text{adj}A)) = (\det A)^{(n-1)^2} for an n×nn \times n matrix AA.
  2. For the given 3×33 \times 3 matrix (n=3n=3), this simplifies to det(adj(adjA))=(detA)4\det(\text{adj}(\text{adj}A)) = (\det A)^4.
  3. Given det(adj(adjA))=64\det(\text{adj}(\text{adj}A)) = 6^4, we get (detA)4=64(\det A)^4 = 6^4, which implies detA=±6\det A = \pm 6.
  4. Calculate the determinant of the matrix AA in terms of xx: detA=x35x26x+30\det A = x^3 - 5x^2 - 6x + 30.
  5. Set detA=6\det A = 6 and solve the cubic equation x35x26x+24=0x^3 - 5x^2 - 6x + 24 = 0 for integer values of xx. The only integer solution is x=2x=2.
  6. Set detA=6\det A = -6 and solve the cubic equation x35x26x+36=0x^3 - 5x^2 - 6x + 36 = 0 for integer values of xx. The only integer solution is x=3x=3.
  7. The possible integer values of xx are 2 and 3. The number of such values is 2.

The final answer is 2\boxed{2}.