Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} x & 2y & x+y \\ y & 2x & x-y \\ 2 & x & y \end{bmatrix}$ and $B = \begin{bm...

Let A=[x2yx+yy2xxy2xy]A = \begin{bmatrix} x & 2y & x+y \\ y & 2x & x-y \\ 2 & x & y \end{bmatrix} and B=[3xyx22xy22yxy4xx2+xy2y22x+xy2y4y2x22x22y22xy+y2x22x22y2]B = \begin{bmatrix} 3xy-x^2 & 2x-y^2-2y & xy-4x \\ x^2+xy-2y^2 & -2x+xy-2y & 4y^2-x^2 \\ -2x^2-2y^2 & 2xy+y^2-x^2 & 2x^2-2y^2 \end{bmatrix}, then which of the following option(s) is/are always correct -

A

If A=3|A| = 3, then B=27|B| = 27

B

If A=4|A| = 4, then B=16|B| = 16

C

If B=50|B| = 50, then A=5|A| = 5

D

If B=1000|B| = 1000, then A=10|A| = 10

Answer

B

Explanation

Solution

We calculated the determinants of AA and BB for specific values of xx and yy.

For x=1,y=0x=1, y=0, A=5|A|=-5 and B=25|B|=25. We observed B=A2|B|=|A|^2.

For x=0,y=1x=0, y=1, A=6|A|=-6 and B=36|B|=36. We observed B=A2|B|=|A|^2.

For x=1,y=1x=1, y=1, A=6|A|=-6 and B=36|B|=36. We observed B=A2|B|=|A|^2.

These examples strongly suggest that the relationship between A|A| and B|B| is B=A2|B|=|A|^2.

Assuming this relationship is always true, we check each option:

(A) If A=3|A|=3, then B=32=9|B|=3^2=9. The option states B=27|B|=27, which is incorrect.

(B) If A=4|A|=4, then B=42=16|B|=4^2=16. The option states B=16|B|=16, which is correct.

(C) If B=50|B|=50, then A2=50|A|^2=50. The option states A=5|A|=5, which means A2=25|A|^2=25. 502550 \neq 25, so this is incorrect.

(D) If B=1000|B|=1000, then A2=1000|A|^2=1000. The option states A=10|A|=10, which means A2=100|A|^2=100. 10001001000 \neq 100, so this is incorrect.

Thus, only option (B) is always correct if B=A2|B|=|A|^2.