Solveeit Logo

Question

Question: Let \( A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} \); \( x, y, z \in I \)...

Let A=[x000y000z]A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}; x,y,zIx, y, z \in I with the condition that det(adj(adjA))=212×38×54det(adj(adj A)) = 2^{12} \times 3^8 \times 5^4, S1S_1 is set of all the matrices AA, S2S_2 is set of all such matrices AA where trace of AA is divisible by 2, and x,y,zNx, y, z \in N and S3S_3 is set of all such matrices AA, where (traceA3)3detA=0(trace A^3) - 3 det A = 0, and x,y,zNx, y, z \in N. Let the number of elements in set S1S_1, S2S_2 and S3S_3 be 2α2\alpha, β\beta and γ\gamma respectively.

Which of the following is/are correct?

A

αβ+γ<10\frac{\alpha}{\beta + \gamma} < 10

B

αβγ>15\frac{\alpha}{\beta - \gamma} > 15

C

αβ+γ>9\frac{\alpha}{\beta + \gamma} > 9

D

αβγ<14\frac{\alpha}{\beta - \gamma} < 14

Answer

(3), (4)

Explanation

Solution

Here's a breakdown of the solution:

1. Determine the condition on x,y,zx, y, z:

Using the property det(adj(M))=(det(M))n1det(adj(M)) = (det(M))^{n-1}. For matrix AA, det(adj(adj(A)))=(det(A))4=(xyz)4det(adj(adj(A))) = (det(A))^4 = (xyz)^4. Equating this to the given value, (xyz)4=212×38×54(xyz)^4 = 2^{12} \times 3^8 \times 5^4, which simplifies to xyz=23×32×51=360|xyz| = 2^3 \times 3^2 \times 5^1 = 360. So, xyz=±360xyz = \pm 360.

2. Calculate α\alpha (for S1S_1):

S1S_1 contains matrices where x,y,zIx, y, z \in I and xyz=±360xyz = \pm 360. The number of ways to factorize 360=23×32×51360 = 2^3 \times 3^2 \times 5^1 into three positive integer factors (x,y,z)(|x|, |y|, |z|) is calculated using stars and bars: (3+3131)×(2+3131)×(1+3131)=10×6×3=180\binom{3+3-1}{3-1} \times \binom{2+3-1}{3-1} \times \binom{1+3-1}{3-1} = 10 \times 6 \times 3 = 180. For each set of absolute values, there are 4 sign combinations that yield a positive product (xyz=360xyz = 360) and 4 sign combinations that yield a negative product (xyz=360xyz = -360). So, 2α=180×4+180×4=720+720=14402\alpha = 180 \times 4 + 180 \times 4 = 720 + 720 = 1440. Thus, α=720\alpha = 720.

3. Calculate β\beta (for S2S_2):

S2S_2 contains matrices where x,y,zNx, y, z \in N (positive integers) and x+y+zx + y + z is even. Since x,y,zNx, y, z \in N, xyz=360xyz = 360. For x+y+zx + y + z to be even, either all x,y,zx, y, z are even (E+E+E=EE + E + E = E) or one is even and two are odd (E+O+O=EE + O + O = E).

  • If x,y,zx, y, z are all even: Let x=2x,y=2y,z=2zx = 2x', y = 2y', z = 2z'. Then xyz=45=32×51x'y'z' = 45 = 3^2 \times 5^1. The number of solutions for (x,y,z)(x', y', z') is (2+3131)×(1+3131)=6×3=18\binom{2+3-1}{3-1} \times \binom{1+3-1}{3-1} = 6 \times 3 = 18.

  • If one is even and two are odd: Assume xx is even, y,zy, z are odd. This means xx must contain all factors of 2 (232^3), and y,zy, z contain only factors of 3 and 5. The number of ways to distribute 323^2 and 515^1 is 6×3=186 \times 3 = 18. There are (31)=3\binom{3}{1} = 3 ways to choose which variable is even. So, 3×18=543 \times 18 = 54 solutions.

Total β=18+54=72\beta = 18 + 54 = 72.

4. Calculate γ\gamma (for S3S_3):

S3S_3 contains matrices where x,y,zNx, y, z \in N and trace(A3)3det(A)=0trace(A^3) - 3det(A) = 0. This means x3+y3+z33xyz=0x^3 + y^3 + z^3 - 3xyz = 0. This identity is equivalent to (x+y+z)(x2+y2+z2xyyzzx)=0(x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) = 0, which simplifies to (x+y+z)12((xy)2+(yz)2+(zx)2)=0(x + y + z) \frac{1}{2}((x - y)^2 + (y - z)^2 + (z - x)^2) = 0. Since x,y,zNx, y, z \in N, x+y+z0x + y + z \ne 0. Thus, (xy)2+(yz)2+(zx)2=0(x - y)^2 + (y - z)^2 + (z - x)^2 = 0, which implies x=y=zx = y = z. From xyz=360xyz = 360, we get x3=360x^3 = 360. Since 360 is not a perfect cube, there are no integer solutions for xx. Therefore, γ=0\gamma = 0.

5. Check inequalities:

Substitute α=720,β=72,γ=0\alpha = 720, \beta = 72, \gamma = 0 into the given options.

(1) 72072+0=10\frac{720}{72 + 0} = 10, so 10<1010 < 10 is false.

(2) 720720=10\frac{720}{72 - 0} = 10, so 10>1510 > 15 is false.

(3) 72072+0=10\frac{720}{72 + 0} = 10, so 10>910 > 9 is true.

(4) 720720=10\frac{720}{72 - 0} = 10, so 10<1410 < 14 is true.

The correct options are (3) and (4).