Question
Question: Let $A = \begin{bmatrix} \sec(x) & \cos(x) & \sec^2(x) + \cot(x)\cdot\csc(x) \\ \cos^2(x) & \cos^2(x...
Let A=sec(x)cos2(x)1cos(x)cos2(x)cos2(x)sec2(x)+cot(x)⋅csc(x)csc2(x)cos2(x)
Where x∈(0,2π), then the value of ∣AAT(A−1)2∣ is (where ∣P∣ is determinant value of matrix P)

Answer
1
Explanation
Solution
Let the given matrix be A. We are asked to find the value of ∣AAT(A−1)2∣. Using the properties of determinants:
- ∣AB∣=∣A∣∣B∣
- ∣AT∣=∣A∣
- ∣A−1∣=1/∣A∣, provided ∣A∣=0.
We can simplify the expression: ∣AAT(A−1)2∣=∣A∣∣AT∣∣(A−1)2∣ =∣A∣∣A∣∣A−1A−1∣ =∣A∣∣A∣∣A−1∣∣A−1∣ =∣A∣2(1/∣A∣)(1/∣A∣) =∣A∣2(1/∣A∣2) =1
This simplification is valid if ∣A∣=0. We need to calculate the determinant of A and check if it is non-zero for x∈(0,2π).
We need to confirm that ∣A∣=0 for x∈(0,π/2). ∣A∣=sin2(x)cos3(x)−sin2(x)−cos3(x) For x∈(0,π/2), sin(x)>0 and cos(x)>0.
Therefore, ∣AAT(A−1)2∣=1