Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} \sec(x) & \cos(x) & \sec^2(x) + \cot(x)\cdot\csc(x) \\ \cos^2(x) & \cos^2(x...

Let A=[sec(x)cos(x)sec2(x)+cot(x)csc(x)cos2(x)cos2(x)csc2(x)1cos2(x)cos2(x)]A = \begin{bmatrix} \sec(x) & \cos(x) & \sec^2(x) + \cot(x)\cdot\csc(x) \\ \cos^2(x) & \cos^2(x) & \csc^2(x) \\ 1 & \cos^2(x) & \cos^2(x) \end{bmatrix}

Where x(0,π2)x \in (0, \frac{\pi}{2}), then the value of AAT(A1)2|AA^T(A^{-1})^2| is (where P|P| is determinant value of matrix PP)

Answer

1

Explanation

Solution

Let the given matrix be AA. We are asked to find the value of AAT(A1)2|AA^T(A^{-1})^2|. Using the properties of determinants:

  1. AB=AB|AB| = |A||B|
  2. AT=A|A^T| = |A|
  3. A1=1/A|A^{-1}| = 1/|A|, provided A0|A| \neq 0.

We can simplify the expression: AAT(A1)2=AAT(A1)2|AA^T(A^{-1})^2| = |A| |A^T| |(A^{-1})^2| =AAA1A1= |A| |A| |A^{-1}A^{-1}| =AAA1A1= |A| |A| |A^{-1}| |A^{-1}| =A2(1/A)(1/A)= |A|^2 (1/|A|) (1/|A|) =A2(1/A2)= |A|^2 (1/|A|^2) =1= 1

This simplification is valid if A0|A| \neq 0. We need to calculate the determinant of A and check if it is non-zero for x(0,π2)x \in (0, \frac{\pi}{2}).

We need to confirm that A0|A| \neq 0 for x(0,π/2)x \in (0, \pi/2). A=sin2(x)cos3(x)sin2(x)cos3(x)|A| = \sin^2(x)\cos^3(x) - \sin^2(x) - \cos^3(x) For x(0,π/2)x \in (0, \pi/2), sin(x)>0\sin(x) > 0 and cos(x)>0\cos(x) > 0.

Therefore, AAT(A1)2=1|AA^T(A^{-1})^2| = 1