Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} \omega & -\omega \\ -\omega & \omega \end{bmatrix}$, where $\omega$ is a co...

Let A=[ωωωω]A = \begin{bmatrix} \omega & -\omega \\ -\omega & \omega \end{bmatrix}, where ω\omega is a complex cube root of unity, B=[1111]B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} and A9=2kBA^9 = 2^kB, where k=k = \dots

Answer

8

Explanation

Solution

To find the value of kk, we first express matrix AA in terms of matrix BB. Given A=[ωωωω]A = \begin{bmatrix} \omega & -\omega \\ -\omega & \omega \end{bmatrix} and B=[1111]B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}. We can factor out ω\omega from matrix AA: A=ω[1111]A = \omega \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} So, A=ωBA = \omega B.

Next, we need to find a general expression for BnB^n. Let's calculate the first few powers of BB: B1=[1111]=BB^1 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = B

B2=BB=[1111][1111]B^2 = B \cdot B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} B2=[(1)(1)+(1)(1)(1)(1)+(1)(1)(1)(1)+(1)(1)(1)(1)+(1)(1)]B^2 = \begin{bmatrix} (1)(1) + (-1)(-1) & (1)(-1) + (-1)(1) \\ (-1)(1) + (1)(-1) & (-1)(-1) + (1)(1) \end{bmatrix} B2=[1+111111+1]=[2222]B^2 = \begin{bmatrix} 1+1 & -1-1 \\ -1-1 & 1+1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} B2=2[1111]=2BB^2 = 2 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = 2B

Now, let's find B3B^3: B3=B2B=(2B)B=2B2B^3 = B^2 \cdot B = (2B) \cdot B = 2B^2 Since B2=2BB^2 = 2B, we substitute this back: B3=2(2B)=4B=22BB^3 = 2(2B) = 4B = 2^2 B

Let's find B4B^4: B4=B3B=(22B)B=22B2B^4 = B^3 \cdot B = (2^2 B) \cdot B = 2^2 B^2 Since B2=2BB^2 = 2B, we substitute this back: B4=22(2B)=23BB^4 = 2^2(2B) = 2^3 B

From the pattern, we can generalize that for any positive integer n1n \ge 1: Bn=2n1BB^n = 2^{n-1} B

Now, we need to calculate A9A^9. Since A=ωBA = \omega B, we have: A9=(ωB)9A^9 = (\omega B)^9 Since ω\omega is a scalar, we can write: A9=ω9B9A^9 = \omega^9 B^9

Now, we use the generalized formula for BnB^n with n=9n=9: B9=291B=28BB^9 = 2^{9-1} B = 2^8 B

Substitute this back into the expression for A9A^9: A9=ω9(28B)A^9 = \omega^9 (2^8 B)

We are given that ω\omega is a complex cube root of unity. This means ω3=1\omega^3 = 1. We can simplify ω9\omega^9: ω9=(ω3)3=(1)3=1\omega^9 = (\omega^3)^3 = (1)^3 = 1

Substitute ω9=1\omega^9 = 1 into the expression for A9A^9: A9=1(28B)A^9 = 1 \cdot (2^8 B) A9=28BA^9 = 2^8 B

The problem states that A9=2kBA^9 = 2^kB. Comparing our result A9=28BA^9 = 2^8 B with A9=2kBA^9 = 2^kB, we can conclude that: k=8k = 8