Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}^n = (a_{ij}(n))$ If $\lim_{n\to\infty}\frac{a...

Let A=[2110]n=(aij(n))A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}^n = (a_{ij}(n))

If limna12(n)a22(n)=l\lim_{n\to\infty}\frac{a_{12}(n)}{a_{22}(n)} = l where l2=a+bl^2 = \sqrt{a} + \sqrt{b}

(a,bN)(a, b \in N), find the value of (a+b)(a+b).

A

17

B

8

C

9

D

72

Answer

17

Explanation

Solution

The characteristic equation of the matrix M=[2110]M = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} is λ22λ1=0\lambda^2 - 2\lambda - 1 = 0, with eigenvalues λ1=1+2\lambda_1 = 1+\sqrt{2} and λ2=12\lambda_2 = 1-\sqrt{2}.

The elements a12(n)a_{12}(n) and a22(n)a_{22}(n) can be expressed in terms of these eigenvalues. For a12(n)a_{12}(n), using the initial conditions a12(0)=0a_{12}(0)=0 and a12(1)=1a_{12}(1)=1, we find a12(n)=122((1+2)n(12)n)a_{12}(n) = \frac{1}{2\sqrt{2}} ((1+\sqrt{2})^n - (1-\sqrt{2})^n). For a22(n)a_{22}(n), using the initial conditions a22(0)=1a_{22}(0)=1 and a22(1)=0a_{22}(1)=0, we find a22(n)=(12122)(1+2)n+(12+122)(12)na_{22}(n) = (\frac{1}{2} - \frac{1}{2\sqrt{2}}) (1+\sqrt{2})^n + (\frac{1}{2} + \frac{1}{2\sqrt{2}}) (1-\sqrt{2})^n.

To find the limit l=limna12(n)a22(n)l = \lim_{n\to\infty}\frac{a_{12}(n)}{a_{22}(n)}, we divide both the numerator and the denominator by the dominant eigenvalue term (1+2)n(1+\sqrt{2})^n: l=limna12(n)(1+2)nlimna22(n)(1+2)n=12212122=121=2+1l = \frac{\lim_{n\to\infty} \frac{a_{12}(n)}{(1+\sqrt{2})^n}}{\lim_{n\to\infty} \frac{a_{22}(n)}{(1+\sqrt{2})^n}} = \frac{\frac{1}{2\sqrt{2}}}{\frac{1}{2} - \frac{1}{2\sqrt{2}}} = \frac{1}{\sqrt{2}-1} = \sqrt{2}+1.

We are given l2=a+bl^2 = \sqrt{a} + \sqrt{b}. l2=(2+1)2=2+22+1=3+22l^2 = (\sqrt{2}+1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}. So, 3+22=a+b3 + 2\sqrt{2} = \sqrt{a} + \sqrt{b}. By inspection, we can set a=3\sqrt{a} = 3 and b=22\sqrt{b} = 2\sqrt{2}, or vice versa. This gives a=32=9a = 3^2 = 9 and b=(22)2=8b = (2\sqrt{2})^2 = 8. Alternatively, we can square both sides: (3+22)2=(a+b)2(3 + 2\sqrt{2})^2 = (\sqrt{a} + \sqrt{b})^2 9+122+8=a+b+2ab9 + 12\sqrt{2} + 8 = a + b + 2\sqrt{ab} 17+122=a+b+2ab17 + 12\sqrt{2} = a + b + 2\sqrt{ab}. Equating the rational and irrational parts, we get a+b=17a+b = 17 and 2ab=122    ab=722\sqrt{ab} = 12\sqrt{2} \implies ab = 72. The natural numbers aa and bb that satisfy a+b=17a+b=17 and ab=72ab=72 are 88 and 99.

Therefore, a+b=8+9=17a+b = 8+9 = 17.