Question
Question: Let $A = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bm...
Let A=[200−3], B=[0310] and X=[cosxsinx−sinxcosx]. If P=AXB,Q=BXTA and Tr((PQ)10)=a10+b10, where a<b, then value of (b−2a) is

A
2
B
3
C
4
D
5
Answer
3
Explanation
Solution
Here's how to solve the problem:
-
Calculate B2:
B2=[0310][0310]=[3003]=3I
-
Note that XT=X−1 since X is a rotation matrix, so XXT=XTX=I.
-
Simplify PQ:
PQ=(AXB)(BXTA)=AX(BB)XTA=AX(3I)XTA=3A(XXT)A=3AIA=3A2
-
Calculate A2:
A2=[200−3][200−3]=[4009]
-
Calculate PQ:
PQ=3A2=3[4009]=[120027]
-
Calculate (PQ)10:
(PQ)10=[1210002710]
-
Calculate Tr((PQ)10):
Tr((PQ)10)=1210+2710
-
Identify a and b:
Since a<b, a=12 and b=27.
-
Calculate b−2a:
b−2a=27−2(12)=27−24=3
Therefore, the value of b−2a is 3.