Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bm...

Let A=[2003]A = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, B=[0130]B = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} and X=[cosxsinxsinxcosx]X = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}. If P=AXB,Q=BXTAP = AXB, Q = BX^TA and Tr((PQ)10)=a10+b10Tr((PQ)^{10}) = a^{10} + b^{10}, where a<ba < b, then value of (b2a)(b - 2a) is

A

2

B

3

C

4

D

5

Answer

3

Explanation

Solution

Here's how to solve the problem:

  1. Calculate B2B^2:

    B2=[0130][0130]=[3003]=3IB^2 = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = 3I

  2. Note that XT=X1X^T = X^{-1} since XX is a rotation matrix, so XXT=XTX=IXX^T = X^TX = I.

  3. Simplify PQPQ:

    PQ=(AXB)(BXTA)=AX(BB)XTA=AX(3I)XTA=3A(XXT)A=3AIA=3A2PQ = (AXB)(BX^TA) = AX(BB)X^TA = AX(3I)X^TA = 3A(XX^T)A = 3AIA = 3A^2

  4. Calculate A2A^2:

    A2=[2003][2003]=[4009]A^2 = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}

  5. Calculate PQPQ:

    PQ=3A2=3[4009]=[120027]PQ = 3A^2 = 3\begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 12 & 0 \\ 0 & 27 \end{bmatrix}

  6. Calculate (PQ)10(PQ)^{10}:

    (PQ)10=[1210002710](PQ)^{10} = \begin{bmatrix} 12^{10} & 0 \\ 0 & 27^{10} \end{bmatrix}

  7. Calculate Tr((PQ)10)Tr((PQ)^{10}):

    Tr((PQ)10)=1210+2710Tr((PQ)^{10}) = 12^{10} + 27^{10}

  8. Identify aa and bb:

    Since a<ba < b, a=12a = 12 and b=27b = 27.

  9. Calculate b2ab - 2a:

    b2a=272(12)=2724=3b - 2a = 27 - 2(12) = 27 - 24 = 3

Therefore, the value of b2ab - 2a is 3.