Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 1 & a & -1 \\ b & 1 & 2 \\ -2 & 1 & c \end{bmatrix}$ and $adj(A) = \begin{b...

Let A=[1a1b1221c]A = \begin{bmatrix} 1 & a & -1 \\ b & 1 & 2 \\ -2 & 1 & c \end{bmatrix} and adj(A)=[211422211]adj(A) = \begin{bmatrix} -2 & -1 & 1 \\ -4 & -2 & -2 \\ 2 & -1 & 1 \end{bmatrix}, where a, b and c are real numbers. Then, which of the following option(s) is/are correct?

A

det(A) = 4

B

a + b + c = 0

C

A1=[12141411212121414]A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \\ 1 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \end{bmatrix}

D

adj(A1)=[140140141212140]adj(A^{-1}) = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & -\frac{1}{4} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & 0 \end{bmatrix}

Answer

B, C, D

Explanation

Solution

Given the matrix A=[1a1b1221c]A = \begin{bmatrix} 1 & a & -1 \\ b & 1 & 2 \\ -2 & 1 & c \end{bmatrix} and its adjoint adj(A)=[211422211]adj(A) = \begin{bmatrix} -2 & -1 & 1 \\ -4 & -2 & -2 \\ 2 & -1 & 1 \end{bmatrix}.

We use the fundamental property Aadj(A)=det(A)IA \cdot adj(A) = det(A) \cdot I, where II is the identity matrix.

  1. Calculate Aadj(A)A \cdot adj(A): Aadj(A)=[1a1b1221c][211422211]A \cdot adj(A) = \begin{bmatrix} 1 & a & -1 \\ b & 1 & 2 \\ -2 & 1 & c \end{bmatrix} \begin{bmatrix} -2 & -1 & 1 \\ -4 & -2 & -2 \\ 2 & -1 & 1 \end{bmatrix}

    The elements of the product matrix are: (Aadj(A))11=(1)(2)+(a)(4)+(1)(2)=24a2=44a(A \cdot adj(A))_{11} = (1)(-2) + (a)(-4) + (-1)(2) = -2 - 4a - 2 = -4 - 4a (Aadj(A))12=(1)(1)+(a)(2)+(1)(1)=12a+1=2a(A \cdot adj(A))_{12} = (1)(-1) + (a)(-2) + (-1)(-1) = -1 - 2a + 1 = -2a (Aadj(A))13=(1)(1)+(a)(2)+(1)(1)=12a1=2a(A \cdot adj(A))_{13} = (1)(1) + (a)(-2) + (-1)(1) = 1 - 2a - 1 = -2a (Aadj(A))21=(b)(2)+(1)(4)+(2)(2)=2b4+4=2b(A \cdot adj(A))_{21} = (b)(-2) + (1)(-4) + (2)(2) = -2b - 4 + 4 = -2b (Aadj(A))22=(b)(1)+(1)(2)+(2)(1)=b22=b4(A \cdot adj(A))_{22} = (b)(-1) + (1)(-2) + (2)(-1) = -b - 2 - 2 = -b - 4 (Aadj(A))23=(b)(1)+(1)(2)+(2)(1)=b2+2=b(A \cdot adj(A))_{23} = (b)(1) + (1)(-2) + (2)(1) = b - 2 + 2 = b (Aadj(A))31=(2)(2)+(1)(4)+(c)(2)=44+2c=2c(A \cdot adj(A))_{31} = (-2)(-2) + (1)(-4) + (c)(2) = 4 - 4 + 2c = 2c (Aadj(A))32=(2)(1)+(1)(2)+(c)(1)=22c=c(A \cdot adj(A))_{32} = (-2)(-1) + (1)(-2) + (c)(-1) = 2 - 2 - c = -c (Aadj(A))33=(2)(1)+(1)(2)+(c)(1)=22+c=4+c(A \cdot adj(A))_{33} = (-2)(1) + (1)(-2) + (c)(1) = -2 - 2 + c = -4 + c

    So, Aadj(A)=[44a2a2a2bb4b2cc4+c]A \cdot adj(A) = \begin{bmatrix} -4 - 4a & -2a & -2a \\ -2b & -b - 4 & b \\ 2c & -c & -4 + c \end{bmatrix}

  2. Determine det(A)det(A) and values of a,b,ca, b, c:

    Comparing Aadj(A)A \cdot adj(A) with det(A)I=[det(A)000det(A)000det(A)]det(A) \cdot I = \begin{bmatrix} det(A) & 0 & 0 \\ 0 & det(A) & 0 \\ 0 & 0 & det(A) \end{bmatrix}:

    From element (1,2)(1,2): 2a=0    a=0-2a = 0 \implies a = 0. From element (1,1)(1,1): 44a=det(A)-4 - 4a = det(A). Substituting a=0a=0, we get 44(0)=det(A)    det(A)=4-4 - 4(0) = det(A) \implies det(A) = -4. This means option A (det(A)=4det(A) = 4) is incorrect.

    Now, substitute a=0a=0 and det(A)=4det(A)=-4 into the product matrix and equate it to det(A)Idet(A) \cdot I: [4002bb4b2cc4+c]=[400040004]\begin{bmatrix} -4 & 0 & 0 \\ -2b & -b - 4 & b \\ 2c & -c & -4 + c \end{bmatrix} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix}

    From element (2,1)(2,1): 2b=0    b=0-2b = 0 \implies b = 0. From element (3,1)(3,1): 2c=0    c=02c = 0 \implies c = 0.

    Let's verify with other diagonal elements: b4=04=4-b - 4 = -0 - 4 = -4 (matches det(A)det(A)). 4+c=4+0=4-4 + c = -4 + 0 = -4 (matches det(A)det(A)). All values are consistent. So, a=0,b=0,c=0a=0, b=0, c=0.

  3. Check Option B: a+b+c=0a+b+c = 0

    a+b+c=0+0+0=0a+b+c = 0+0+0 = 0. Therefore, option B is correct.

  4. Check Option C: A1A^{-1}

    We know A1=1det(A)adj(A)A^{-1} = \frac{1}{det(A)} adj(A). A1=14[211422211]=[241414442424241414]A^{-1} = \frac{1}{-4} \begin{bmatrix} -2 & -1 & 1 \\ -4 & -2 & -2 \\ 2 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{-2}{-4} & \frac{-1}{-4} & \frac{1}{-4} \\ \frac{-4}{-4} & \frac{-2}{-4} & \frac{-2}{-4} \\ \frac{2}{-4} & \frac{-1}{-4} & \frac{1}{-4} \end{bmatrix} A1=[12141411212121414]A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \\ 1 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \end{bmatrix} Therefore, option C is correct.

  5. Check Option D: adj(A1)adj(A^{-1})

    We use the property adj(A1)=1det(A)Aadj(A^{-1}) = \frac{1}{det(A)} A. First, write down matrix A with the found values a=0,b=0,c=0a=0, b=0, c=0: A=[101012210]A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -2 & 1 & 0 \end{bmatrix} adj(A1)=14[101012210]=[140140142424140]adj(A^{-1}) = \frac{1}{-4} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & -\frac{1}{4} & -\frac{2}{4} \\ \frac{2}{4} & -\frac{1}{4} & 0 \end{bmatrix} adj(A1)=[140140141212140]adj(A^{-1}) = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & -\frac{1}{4} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & 0 \end{bmatrix} Therefore, option D is correct.

The final answer is B,C,D\boxed{B, C, D}