Question
Question: Let $A = \begin{bmatrix} 1 & a & -1 \\ b & 1 & 2 \\ -2 & 1 & c \end{bmatrix}$ and $adj(A) = \begin{b...
Let A=1b−2a11−12c and adj(A)=−2−42−1−2−11−21, where a, b and c are real numbers. Then, which of the following option(s) is/are correct?

det(A) = 4
a + b + c = 0
A−1=211−21412141−4121−41
adj(A−1)=−410210−41−4141−210
B, C, D
Solution
Given the matrix A=1b−2a11−12c and its adjoint adj(A)=−2−42−1−2−11−21.
We use the fundamental property A⋅adj(A)=det(A)⋅I, where I is the identity matrix.
-
Calculate A⋅adj(A): A⋅adj(A)=1b−2a11−12c−2−42−1−2−11−21
The elements of the product matrix are: (A⋅adj(A))11=(1)(−2)+(a)(−4)+(−1)(2)=−2−4a−2=−4−4a (A⋅adj(A))12=(1)(−1)+(a)(−2)+(−1)(−1)=−1−2a+1=−2a (A⋅adj(A))13=(1)(1)+(a)(−2)+(−1)(1)=1−2a−1=−2a (A⋅adj(A))21=(b)(−2)+(1)(−4)+(2)(2)=−2b−4+4=−2b (A⋅adj(A))22=(b)(−1)+(1)(−2)+(2)(−1)=−b−2−2=−b−4 (A⋅adj(A))23=(b)(1)+(1)(−2)+(2)(1)=b−2+2=b (A⋅adj(A))31=(−2)(−2)+(1)(−4)+(c)(2)=4−4+2c=2c (A⋅adj(A))32=(−2)(−1)+(1)(−2)+(c)(−1)=2−2−c=−c (A⋅adj(A))33=(−2)(1)+(1)(−2)+(c)(1)=−2−2+c=−4+c
So, A⋅adj(A)=−4−4a−2b2c−2a−b−4−c−2ab−4+c
-
Determine det(A) and values of a,b,c:
Comparing A⋅adj(A) with det(A)⋅I=det(A)000det(A)000det(A):
From element (1,2): −2a=0⟹a=0. From element (1,1): −4−4a=det(A). Substituting a=0, we get −4−4(0)=det(A)⟹det(A)=−4. This means option A (det(A)=4) is incorrect.
Now, substitute a=0 and det(A)=−4 into the product matrix and equate it to det(A)⋅I: −4−2b2c0−b−4−c0b−4+c=−4000−4000−4
From element (2,1): −2b=0⟹b=0. From element (3,1): 2c=0⟹c=0.
Let's verify with other diagonal elements: −b−4=−0−4=−4 (matches det(A)). −4+c=−4+0=−4 (matches det(A)). All values are consistent. So, a=0,b=0,c=0.
-
Check Option B: a+b+c=0
a+b+c=0+0+0=0. Therefore, option B is correct.
-
Check Option C: A−1
We know A−1=det(A)1adj(A). A−1=−41−2−42−1−2−11−21=−4−2−4−4−42−4−1−4−2−4−1−41−4−2−41 A−1=211−21412141−4121−41 Therefore, option C is correct.
-
Check Option D: adj(A−1)
We use the property adj(A−1)=det(A)1A. First, write down matrix A with the found values a=0,b=0,c=0: A=10−2011−120 adj(A−1)=−4110−2011−120=−410420−41−4141−420 adj(A−1)=−410210−41−4141−210 Therefore, option D is correct.
The final answer is B,C,D