Solveeit Logo

Question

Question: Let A \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\) and B = \(\begin{bmatrix} a & b \\ c & d \end...

Let A [1234]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and B = [abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix} are two matrices such that AB = BA and c ¹ 0, then value of ad3bc\frac{a - d}{3b - c} is

A

0

B

2

C

–2

D

– 1

Answer

– 1

Explanation

Solution

AB = [1234]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} [abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}= [a+2cb+2d3a+4c2c+4d]\begin{bmatrix} a + 2c & b + 2d \\ 3a + 4c & 2c + 4d \end{bmatrix}

BA = [1234]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}= [a+3b2a+4bc+3d2c+4d]\begin{bmatrix} a + 3b & 2a + 4b \\ c + 3d & 2c + 4d \end{bmatrix}

if AB = BA, then a + 2c = a + 3b

̃ 2c = 3b ̃ b ¹ 0

b + 2d = 2a + 4b

̃ 2a – 2d = – 3b

ad3bc=32b3b32b\frac{a - d}{3b - c} = \frac{- \frac{3}{2}b}{3b - \frac{3}{2}b}= – 1