Solveeit Logo

Question

Question: Let A =\(\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}\). If U<sub>1</sub>, U<su...

Let A =[100210321]\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}. If U1, U2, U3 are column matrices

satisfying AU1 = [100]\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AU2 = [230]\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, AU3 = [231]\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} and U is

3 × 3 matrix whose columns are U1, U2 and U3. Then |U| =

A

3

B

3/2

C

–3

D

2

Answer

3

Explanation

Solution

[a1b1c1]\begin{bmatrix} a_{1} \\ b_{1} \\ c_{1} \end{bmatrix}, U2 = [a2b2c2]\begin{bmatrix} a_{2} \\ b_{2} \\ c_{2} \end{bmatrix}, U3 = [a3b3c3]\begin{bmatrix} a_{3} \\ b_{3} \\ c_{3} \end{bmatrix}

A. U1 = [100210321]\left[ \begin{array} { l l l } 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{array} \right] [a1b1c1]\begin{bmatrix} a_{1} \\ b_{1} \\ c_{1} \end{bmatrix} = [100]\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}

=[a12a1+b13a1+2b1+c1]\begin{bmatrix} a_{1} \\ 2a_{1} + b_{1} \\ 3a_{1} + 2b_{1} + c_{1} \end{bmatrix}=[100]\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}

̃ a1 = 1, b1 = –2, c1 = 1

̃ U1 = [121]\begin{bmatrix} 1 \\ –2 \\ 1 \end{bmatrix}

Similarly U2 = [214]\begin{bmatrix} 2 \\ –1 \\ –4 \end{bmatrix}& U3 = [213]\begin{bmatrix} 2 \\ –1 \\ –3 \end{bmatrix}

U = [122211143]\begin{bmatrix} 1 & 2 & 2 \\ –2 & –1 & –1 \\ 1 & –4 & –3 \end{bmatrix} ̃ |U| = 3