Question
Question: Let \(A = \begin{bmatrix} 1 & - 1 & 1 \\ 2 & 1 & - 3 \\ 1 & 1 & 1 \end{bmatrix}\)and \(10.B = \begin...
Let A=121−1111−31and $10.B = \begin{bmatrix} 4 & 2 & 2 \
- 5 & 0 & \alpha \ 1 & - 2 & 3 \end{bmatrix}.IfBistheinverseofmatrixA,then\alpha$is
A
5
B
–1
C
2
D
–2
Answer
5
Explanation
Solution
We have, $A = \begin{bmatrix} 1 & - 1 & 1 \
- 2 & 1 & - 3 \ 1 & 1 & 1 \end{bmatrix},∴|A| = 1(4) + 1(5) + 1(1) = 10$
and $adj(A) = \begin{bmatrix} 4 & 2 & 2 \
- 5 & 0 & 5 \ 1 & - 2 & 3 \end{bmatrix}$
Then $A^{- 1} = \frac{1}{10}\begin{bmatrix} 4 & 2 & 2 \
- 5 & 0 & 5 \ 1 & - 2 & 3 \end{bmatrix}$
According to question, B is the inverse of matrix A. Hence α=5