Solveeit Logo

Question

Question: Let \(A = \begin{bmatrix} 1 & - 1 & 1 \\ 2 & 1 & - 3 \\ 1 & 1 & 1 \end{bmatrix}\)and \(10.B = \begin...

Let A=[111213111]A = \begin{bmatrix} 1 & - 1 & 1 \\ 2 & 1 & - 3 \\ 1 & 1 & 1 \end{bmatrix}and $10.B = \begin{bmatrix} 4 & 2 & 2 \

  • 5 & 0 & \alpha \ 1 & - 2 & 3 \end{bmatrix}.IfBistheinverseofmatrixA,then. If B is the inverse of matrix A, then \alpha$is
A

5

B

–1

C

2

D

–2

Answer

5

Explanation

Solution

We have, $A = \begin{bmatrix} 1 & - 1 & 1 \

  • 2 & 1 & - 3 \ 1 & 1 & 1 \end{bmatrix},, ∴ |A| = 1(4) + 1(5) + 1(1) = 10$

and $adj(A) = \begin{bmatrix} 4 & 2 & 2 \

  • 5 & 0 & 5 \ 1 & - 2 & 3 \end{bmatrix}$

Then $A^{- 1} = \frac{1}{10}\begin{bmatrix} 4 & 2 & 2 \

  • 5 & 0 & 5 \ 1 & - 2 & 3 \end{bmatrix}$

According to question, B is the inverse of matrix A. Hence α=5\alpha = 5