Solveeit Logo

Question

Question: Let \(A = \begin{bmatrix} 0 & 0 & - 1 \\ 0 & - 1 & 0 \\ - 1 & 0 & 0 \end{bmatrix}\), the only corre...

Let $A = \begin{bmatrix} 0 & 0 & - 1 \ 0 & - 1 & 0 \

  • 1 & 0 & 0 \end{bmatrix}$, the only correct statement about the matrix A is
A

A2=IA^{2} = I

B

A=(1)IA = ( - 1)I, where I is unit matrix

C

A1A^{- 1}does not exist

D

A is zero matrix

Answer

A2=IA^{2} = I

Explanation

Solution

$A^{2} = A.A = \begin{bmatrix} 0 & 0 & - 1 \ 0 & - 1 & 0 \

  • 1 & 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 0 & - 1 \ 0 & - 1 & 0 \
  • 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} = I.Also,. Also, A^{- 1}existsasexists as |A| = 1$