Question
Question: Let \(A = \begin{bmatrix} 0 & 0 & - 1 \\ 0 & - 1 & 0 \\ - 1 & 0 & 0 \end{bmatrix}\), the only corre...
Let $A = \begin{bmatrix} 0 & 0 & - 1 \ 0 & - 1 & 0 \
- 1 & 0 & 0 \end{bmatrix}$, the only correct statement about the matrix A is
A
A2=I
B
A=(−1)I, where I is unit matrix
C
A−1does not exist
D
A is zero matrix
Answer
A2=I
Explanation
Solution
$A^{2} = A.A = \begin{bmatrix} 0 & 0 & - 1 \ 0 & - 1 & 0 \
- 1 & 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 0 & - 1 \ 0 & - 1 & 0 \
- 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} = I.Also,A^{- 1}existsas|A| = 1$