Solveeit Logo

Question

Question: Let \(A = \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix}\) and I be unit matrix of order 2. Statemen...

Let A=[0300]A = \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix} and I be unit matrix of order 2.

Statement-1: (I+A)532=I+532A(I+A)^{532} = I + 532A and

Statement-2: If B be a nilpotent matrix of index 2 and I be a unit matrix of same order as B then (I+B)n=I+nB,nN(I+B)^n = I + nB, n \in N.

A

Statement-1 is True, Statement-2 is True

B

Statement-1 is False, Statement-2 is False

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Answer

Statement-1 is True, Statement-2 is True

Explanation

Solution

Statement-1:

We are given the matrix A=[0300]A = \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix} and the identity matrix I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. We need to check if (I+A)532=I+532A(I+A)^{532} = I + 532A.

First, let's calculate I+AI+A: I+A=[1001]+[0300]=[1301]I+A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}.

Let's calculate the powers of (I+A)(I+A): (I+A)1=[1301](I+A)^1 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} (I+A)2=[1301][1301]=[1601](I+A)^2 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -6 \\ 0 & 1 \end{bmatrix} (I+A)3=[1601][1301]=[1901](I+A)^3 = \begin{bmatrix} 1 & -6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -9 \\ 0 & 1 \end{bmatrix}

By observing the pattern, it appears that (I+A)n=[13n01](I+A)^n = \begin{bmatrix} 1 & -3n \\ 0 & 1 \end{bmatrix} for any positive integer nn.

For n=532n=532, we have (I+A)532=[1353201]=[1159601](I+A)^{532} = \begin{bmatrix} 1 & -3 \cdot 532 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1596 \\ 0 & 1 \end{bmatrix}.

Now let's calculate I+532AI + 532A: I+532A=[1001]+532[0300]=[1001]+[0159600]=[1159601]I + 532A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 532 \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -1596 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1596 \\ 0 & 1 \end{bmatrix}.

Since (I+A)532=[1159601](I+A)^{532} = \begin{bmatrix} 1 & -1596 \\ 0 & 1 \end{bmatrix} and I+532A=[1159601]I + 532A = \begin{bmatrix} 1 & -1596 \\ 0 & 1 \end{bmatrix}, Statement-1 is True.

Statement-2:

We are given that B is a nilpotent matrix of index 2, which means B0B \neq 0 and B2=0B^2 = 0. We need to check if (I+B)n=I+nB(I+B)^n = I + nB for nNn \in N.

Since I is the identity matrix, it commutes with any matrix B of the same order, i.e., IB=BIIB = BI. Therefore, we can use the binomial expansion for matrices:

(I+B)n=(n0)InB0+(n1)In1B1+(n2)In2B2+(n3)In3B3++(nn)I0Bn(I+B)^n = \binom{n}{0} I^n B^0 + \binom{n}{1} I^{n-1} B^1 + \binom{n}{2} I^{n-2} B^2 + \binom{n}{3} I^{n-3} B^3 + \dots + \binom{n}{n} I^0 B^n.

Since B2=0B^2 = 0, it follows that B3=B2B=0B=0B^3 = B^2 B = 0 \cdot B = 0, B4=B3B=0B=0B^4 = B^3 B = 0 \cdot B = 0, and so on. Thus, Bk=0B^k = 0 for all k2k \ge 2.

The binomial expansion simplifies to: (I+B)n=(n0)I+(n1)B+(n2)0+(n3)0++(nn)0(I+B)^n = \binom{n}{0} I + \binom{n}{1} B + \binom{n}{2} \cdot 0 + \binom{n}{3} \cdot 0 + \dots + \binom{n}{n} \cdot 0 (I+B)n=1I+nB(I+B)^n = 1 \cdot I + n \cdot B (I+B)n=I+nB(I+B)^n = I + nB.

This formula holds for any natural number nn. Therefore, Statement-2 is True.

Both Statement-1 and Statement-2 are true. Note that the matrix A in Statement-1 is a nilpotent matrix of index 2, since A2=[0300][0300]=[0000]A^2 = \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} and A0A \neq 0. Statement-1 is a specific instance of the general result given in Statement-2, for B=AB=A and n=532n=532.