Solveeit Logo

Question

Question: Let A = \(\begin{bmatrix} - 1 & 2 & - 3 \\ - 2 & 0 & 3 \\ 3 & - 3 & 1 \end{bmatrix}\)be a matrix, ...

Let A = $\begin{bmatrix}

  • 1 & 2 & - 3 \
  • 2 & 0 & 3 \ 3 & - 3 & 1 \end{bmatrix}$be a matrix, then

(determinant of A ) × (adjoint of inverse of A) is equal to-

A

O3 × 3

B

$\begin{bmatrix}

  • 1 & 2 & - 3 \
  • 2 & 0 & 3 \ 3 & - 3 & 1 \end{bmatrix}$
C

I3

D

$\begin{bmatrix}

  • 3 & - 3 & 1 \ 3 & 0 & - 2 \
  • 1 & 2 & - 3 \end{bmatrix}$
Answer

$\begin{bmatrix}

  • 1 & 2 & - 3 \
  • 2 & 0 & 3 \ 3 & - 3 & 1 \end{bmatrix}$
Explanation

Solution

|A| adj (A–1) = ?

A–1 adj (A–1) = |A–1| I3

Ž A. A–1 adj (A–1) = |A–1| AI3

Ž adj (A–1) = |A–1| A

Ž |A| adj (A–1) = A

Here |A| = 13 But |A| ¹ 0