Question
Question: Let A = \(\begin{bmatrix} - 1 & 2 & - 3 \\ - 2 & 0 & 3 \\ 3 & - 3 & 1 \end{bmatrix}\)be a matrix, ...
Let A = $\begin{bmatrix}
- 1 & 2 & - 3 \
- 2 & 0 & 3 \ 3 & - 3 & 1 \end{bmatrix}$be a matrix, then
(determinant of A ) × (adjoint of inverse of A) is equal to-
A
O3 × 3
B
$\begin{bmatrix}
- 1 & 2 & - 3 \
- 2 & 0 & 3 \ 3 & - 3 & 1 \end{bmatrix}$
C
I3
D
$\begin{bmatrix}
- 3 & - 3 & 1 \ 3 & 0 & - 2 \
- 1 & 2 & - 3 \end{bmatrix}$
Answer
$\begin{bmatrix}
- 1 & 2 & - 3 \
- 2 & 0 & 3 \ 3 & - 3 & 1 \end{bmatrix}$
Explanation
Solution
|A| adj (A–1) = ?
A–1 adj (A–1) = |A–1| I3
Ž A. A–1 adj (A–1) = |A–1| AI3
Ž adj (A–1) = |A–1| A
Ž |A| adj (A–1) = A
Here |A| = 13 But |A| ¹ 0