Solveeit Logo

Question

Mathematics Question on Determinants

Let A=55αα\[0.3em]0α5α\[0.3em]005A=\begin{vmatrix} 5& 5\alpha & \alpha \\\[0.3em] 0 &\alpha &5\alpha \\\[0.3em] 0 &0& 5 \end{vmatrix} , If A2=25\left|\,A^2\,\right|=25,then α\left|\,\alpha\,\right| equals

A

525^2

B

11

C

15\frac{1}{5}

D

55

Answer

15\frac{1}{5}

Explanation

Solution

A=55αα\[0.3em]0α5α\[0.3em]005=25α| A | =\begin{vmatrix} 5& 5\alpha & \alpha \\\[0.3em] 0 &\alpha &5\alpha \\\[0.3em] 0 &0& 5 \end{vmatrix} = 25 \, \alpha Since A2=25A.A=25|A^2| = 25 \, \therefore \, |A.A| = 25 \Rightarrow AA=25(25α)2=25|A| | A| = 25 \, \Rightarrow (25 \, \alpha)^2 = 25 \Rightarrow α2=125α=15\alpha^2 = \frac{1}{25} \, \Rightarrow\, |\alpha |= \frac{1}{5} \,