Solveeit Logo

Question

Mathematics Question on Determinants

Let A=(x+23x 3x+2),B=(x0 5x+2)A=\begin{pmatrix}x+2&3x\\\ 3&x+2\end{pmatrix}, B=\begin{pmatrix}x&0\\\ 5&x+2\end{pmatrix}. Then all solutions of the equation det (AB)=0(AB) = 0 is

A

1,1,0,21, -1, 0, 2

B

1,4,0,21, 4, 0, -2

C

1,1,4,31, -1, 4, 3

D

1,4,0,3-1, 4, 0, 3

Answer

1,4,0,21, 4, 0, -2

Explanation

Solution

We know that,
det(AB)=det(A)det(B)\text{det}(A B)=\text{det}(A) \text{det}(B)
det(AB)=0\therefore \text{det}(A B)=0
det(A)det(B)=0\Rightarrow \text{det}(A) \cdot \text{det}(B)=0
x+23x 3x+2x0 5x+2=0\Rightarrow \begin{vmatrix}x+2 & 3 x \\\ 3 & x+2\end{vmatrix} \begin{vmatrix} x & 0 \\\ 5 & x+2\end{vmatrix} =0
\Rightarrow \left\\{(x+2)^{2}-9 x\right\\}\\{x(x+2)-0\\}=0
(x2+4x+49x)x(x+2)=0\Rightarrow \left(x^{2}+4 x+4-9 x\right) x(x+2)=0
x(x+2)(x25x+4)=0\Rightarrow x(x+2)\left(x^{2}-5 x+4\right)=0
x(x+2)(x1)(x4)=0\Rightarrow x(x+2)(x-1)(x-4)=0
x=0,2,1,4\Rightarrow x=0,-2,1,4