Question
Mathematics Question on Determinants
Let A=(m pnq),d=∣A∣=0 and ∣A−d(AdjA)∣=0 Then
A
1+d2=m2+q2
B
1+d2=(m+q)2
C
(1+d)2=m2+q2
D
(1+d)2=(m+q)2
Answer
(1+d)2=(m+q)2
Explanation
Solution
The correct answer is (D) : (1+d)2=(m+q)2
A=[mpnq],∣A−d(adjA)∣=0
⇒∣A−d(adjA)∣=∣∣[mpnq]−d[q−p−nm]∣∣
=∣∣m−qdp(1+d)n(1+d)q−md∣∣=0
⇒(m−qd)(q−md)−np(1+d)2=0
⇒mq−m2d−q2d+mqdd2−np(1+d)2=0
⇒(mq−np)+d2(mq−np)−d(m2+q2+2np)=0
⇒d+d3−d((m+q)2−2d)=0
⇒1+d2=(m+q)2−2d
⇒(1+d)2=(m+q)2