Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let A=(a0 cd)A = \begin{pmatrix} a & 0 \\\ c & d \end{pmatrix} be a real matrix, where ad=1ad = 1 and c0c \ne 0. If A1+(adjA)1=(αβ γδ)A^{-1} + (\text{adj} \, A)^{-1} = \begin{pmatrix} \alpha & \beta \\\ \gamma & \delta \end{pmatrix}, then (α,β,γ,δ)(\alpha, \beta, \gamma, \delta) is equal to

A

(a+d,0,0,a+d)(a + d, 0, 0, a + d)

B

(a+d,0,c,a+d)(a + d, 0, c, a + d)

C

(a,0,0,d)(a, 0, 0, d)

D

(a,0,c,d)(a, 0, c, d)

Answer

(a+d,0,0,a+d)(a + d, 0, 0, a + d)

Explanation

Solution

The correct option is (A): (a+d,0,0,a+d)(a + d, 0, 0, a + d)