Solveeit Logo

Question

Mathematics Question on inequalities

Let A=(211 101 110)\begin{pmatrix} 2 &-1 &-1 \\\ 1&0 &-1 \\\ 1&-1 &0 \end{pmatrix} and B=A–I. If ω=3i12\frac{\sqrt3 i-1}{2}, then the number of elements in the set {n∈{1,2,⋯,100}:An+(ωB)nA^n+(ωB)^n=A+B} is equal to _______.

Answer

Here
A=(211 101 110)\begin{pmatrix} 2 &-1 &-1 \\\ 1&0 &-1 \\\ 1&-1 &0 \end{pmatrix}
We get A 2 = A and similarly, for
B=A−I=[111 111 111]\begin{bmatrix} 1 &-1 &-1 \\\ 1& -1&-1 \\\ 1&-1 &-1 \end{bmatrix}
We get,
B 2 = – B
B 3 = B
A n + (ω B)n = A + (ω B)n for n ∈ N
For ω n to be unity n shall be multiple of 3 and for B n to be B.n shell be 3, 5, 7, … 99
n = {3, 9, 15,….. 99}
Number of elements = 17.