Question
Mathematics Question on Matrices
Let
A=(1+i −i10) where i=−1.
Then, the number of elements in the set
\left\\{n∈\left\\{1,2,…,100\right\\}:A^n=A\right\\}
is ________.
Answer
The correct answer is 25
∴A2=[1+i −i10][1+i −110]=[i 1−i1+i−i]
A4=[i 1−i1+i−i][i 1−i1+i−i]=l
So A5 = A, A9 = A and so on.
Clearly n = 1, 5, 9, ….., 97
Thereore , number of values of n = 25