Question
Mathematics Question on Determinants
Let A=[3\275]and B=[6\789],Verify that (AB)-1=B-1A-1.
Let A=[3\275]
we have IAI=15-14=1
Now,A11=5 ,A12=-2, A21=-7, A22=3
therefore adj A=5−2−73
therefore A-1=∣A∣1.adj A=5−2−73
Now let B=[6\789]
we have IBI=54-56=-2
so adj B=9−7−86
therefore B-1=∣B∣1 adj B=-\frac{1}{27}$$\begin{bmatrix}9&-8\\\\-7&6\end{bmatrix}
=−79274−3
Now,B-1 A-1=\begin{bmatrix}-\frac{9}{7}&4\\\\\frac{7}{2}&-3\end{bmatrix}$$\begin{bmatrix}5&-7\\\\-2&3\end{bmatrix}
=−245−8235+6263+12−249−9
=−261247287−267...(1)
Then ,AB=\begin{bmatrix}3&7\\\2&5\end{bmatrix}$$\begin{bmatrix}6&8\\\7&9\end{bmatrix}
=[18+49\12+3524+6316+45]
=[67\478761]
therefore we have IABI=67x61-87x47=4087-4089=-2
Also adj(AB)=61−47−8767
therefore (AB)-1=∣AB∣1adj AB=-\frac{1}{2}$$\begin{bmatrix}61&-87\\\\-47&67\end{bmatrix}
=−261247287−267 ....(2)
From (1) and (2), we have:
(AB)-1 = B-1 A-1
Hence, the given result is proved