Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let A=[2a0 131 05b]A = \begin{bmatrix} 2 & a & 0 \\\ 1 & 3 & 1 \\\ 0 & 5 & b \end{bmatrix}. If A3=4A2A21IA^3 = 4A^2 - A - 21I, where I is the identity matrix of order 3×33 \times 3, then 2a+3b2a + 3b is equal to:

A

-10

B

-13

C

-9

D

-12

Answer

-13

Explanation

Solution

From the matrix equation:

A34A2+A+21I=0.A^3 - 4A^2 + A + 21I = 0.

Step 1: Taking the trace:

tr(A3)4tr(A2)+tr(A)+21tr(I)=0.\text{tr}(A^3) - 4\text{tr}(A^2) + \text{tr}(A) + 21 \cdot \text{tr}(I) = 0.

Since tr(I)=3\text{tr}(I) = 3, we find:

tr(A)=4+5+b=b1.\text{tr}(A) = 4 + 5 + b = b - 1.

Step 2: The determinant:

A=16+a=21    a=5.|A| = -16 + a = -21 \implies a = -5.

Step 3: Final calculation:

2a+3b=2(5)+3(1)=13.2a + 3b = 2(-5) + 3(-1) = -13.

Final Answer:

-13.\text{-13.}