Solveeit Logo

Question

Mathematics Question on Matrix

Let A=[21 11]A = \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix}. If the sum of the diagonal elements of A13A^{13} is 3n3^n, then nn is equal to _____.

Answer

The given matrix is:
A=[21 11].A = \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix}.
Compute successive powers of AA:
A2=[21 11][21 11]=[33 30].A^2 = \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\\ 3 & 0 \end{bmatrix}.
A3=A2A=[33 30][21 11]=[36 63].A^3 = A^2 \cdot A = \begin{bmatrix} 3 & -3 \\\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -6 \\\ 6 & -3 \end{bmatrix}.
A4=A3A=[36 63][21 11]=[09 99].A^4 = A^3 \cdot A = \begin{bmatrix} 3 & -6 \\\ 6 & -3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -9 \\\ 9 & -9 \end{bmatrix}.
A5=A4A=[09 99][21 11]=[99 918].A^5 = A^4 \cdot A = \begin{bmatrix} 0 & -9 \\\ 9 & -9 \end{bmatrix} \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -9 & -9 \\\ 9 & -18 \end{bmatrix}.
A6=A5A=[99 918][21 11]=[270 027].A^6 = A^5 \cdot A = \begin{bmatrix} -9 & -9 \\\ 9 & -18 \end{bmatrix} \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -27 & 0 \\\ 0 & -27 \end{bmatrix}.
A7=A6A=[270 027][21 11]=[3627 2736].A^7 = A^6 \cdot A = \begin{bmatrix} -27 & 0 \\\ 0 & -27 \end{bmatrix} \begin{bmatrix} 2 & -1 \\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 36 & -27 \\\ -27 & 36 \end{bmatrix}.
Observe that the diagonal elements of A7A^7 are 3636 and 3636. Their sum is:
Sum of diagonal elements=36+36=72=3235=37.\text{Sum of diagonal elements} = 36 + 36 = 72 = 3^2 \cdot 3^5 = 3^7.
Thus: n=7.n = 7.