Solveeit Logo

Question

Mathematics Question on Matrices

Let A=[201 110 101]A = \begin{bmatrix} 2 & 0 & 1 \\\ 1 & 1 & 0 \\\ 1 & 0 & 1 \end{bmatrix}, B=[B1,B2,B3]B = [B_1, B_2, B_3], where B1,B2,B3B_1, B_2, B_3 are column matrices, and AB1=[1 0 0]AB_1 = \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix}, AB2=[2 3 0]AB_2 = \begin{bmatrix} 2 \\\ 3 \\\ 0 \end{bmatrix}, AB3=[3 2 1]AB_3 = \begin{bmatrix} 3 \\\ 2 \\\ 1 \end{bmatrix}.
If α=B\alpha = |B| and β\beta is the sum of all the diagonal elements of B, then α3+β3\alpha^3 + \beta^3 is equal to _____.

Answer

Step 1. Define Matrices:
A=[201 110 101]A = \begin{bmatrix} 2 & 0 & 1 \\\ 1 & 1 & 0 \\\ 1 & 0 & 1 \end{bmatrix}, B=[B1,B2,B3]B = [B_1, B_2, B_3]

where
B1=[x1 y1 z1]B_1 = \begin{bmatrix} x_1 \\\ y_1 \\\ z_1 \end{bmatrix}, B2=[x2 y2 z2]B_2 = \begin{bmatrix} x_2 \\\ y_2 \\\ z_2 \end{bmatrix}, B3=[x3 y3 z3]B_3 = \begin{bmatrix} x_3 \\\ y_3 \\\ z_3 \end{bmatrix}.

Step 2. Equations from Matrix Multiplication:
- For AB1=[1 0 0]AB_1 = \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix}, we get:
{2x1+z1=1 x1+y1=0 x1+z1=0\begin{cases} 2x_1 + z_1 = 1 \\\ x_1 + y_1 = 0 \\\ x_1 + z_1 = 0 \end{cases}

- For AB2=[2 3 0]AB_2 = \begin{bmatrix} 2 \\\ 3 \\\ 0 \end{bmatrix}, we get:
{2x2+z2=2 x2+y2=3 x2+z2=0\begin{cases} 2x_2 + z_2 = 2 \\\ x_2 + y_2 = 3 \\\ x_2 + z_2 = 0 \end{cases}

- For AB3=[3 2 1]AB_3 = \begin{bmatrix} 3 \\\ 2 \\\ 1 \end{bmatrix}, we get:
{2x3+z3=3 x3+y3=2 x3+z3=1\begin{cases} 2x_3 + z_3 = 3 \\\ x_3 + y_3 = 2 \\\ x_3 + z_3 = 1 \end{cases}

Step 3. Solving for BB: Solve these systems of equations to determine the values of B1B_1, B2B_2, and B3B_3.

Step 4. Calculate α\alpha and β\beta:
- α=B=3β\alpha = |B| = 3 - \beta is the sum of the diagonal elements of BB, which is 1.

Step 5. Find α3+β3\alpha^3 + \beta^3:
α3+β3=27+1=28\alpha^3 + \beta^3 = 27 + 1 = 28