Question
Mathematics Question on Matrices
Let A=[1 −521]andA1=xA+yI, then the values of x and y respectively are
A
11−1,112
B
11−1,11−2
C
111,112
D
111,11−2
Answer
11−1,112
Explanation
Solution
Given,A=[1 −521] we have A=IA ∴[1 −521]=[1 001]A Applying R2→R2+5R1, we get [1 0211]=[1 501]A Applying R2→111R2, we get [1 021]=[1 1150111]A Applying R1→R1+2R2, we get [1 001]=[111 115−112111]A ∴A−1=111[1 5−21] Also, A−1=xA+yI ⇒111[1 5−21]=[x −5x2xx]+[y 00y] ⇒111[1 5−21]=[x+y −5x2xx+y] ⇒x+y=111,2x=−112 ⇒x=−111,y=112