Question
Mathematics Question on Determinants
Let A=1 −2 1−231115verify that -
(i)[adjA]−1=adj(A−1)
(ii)(A−1)−1=A
A=1 −2 1−231115
∴∣A∣=1(15−1)+2(−10−1)+1(−2−3)=14−22−5=−13
Now,A11=14,A12=11,A13=−5
A21=11,A22=4,A23=−3
A31=−5,A32=−3,A33=−1
∴adjA=14 11 −5114−3−5−3−1
∴A−1=∣A∣1(adjA)
=13−114 11 −5114−3−5−3−1
=131−14 −11 5−11−43531
(i)∣adjA∣=14(−4−9)−11(−11−15)−5(−33+20)
=14(−13)−11(−26)−5(−13)
=−182+286+65=169
we have,
adj(adjA)=−13 26 −1326−39−13−13−1365
∴[adjA]−1=∣adjA∣1(adj(adjA))
1691−13 26 −1326−39−13−13−1365
=131−1 2 −12−3−1−1−1−5
Now,A−1=131−14 −11 5−11−43531=13−14 13−11 13513−1113−4133135133131
∴adj(A−1)=−4/169−9/169 −(−11/169−15/169) −33/169+20/169−(−11/169−15/169)−14/169−25/169−(−42/169+55/169)−33/169+20/169−(−42/169+55/169)56/169−121/169
=1691−13 26 −1326−39−13−13−1365
=131−1 2 −12−3−1−1−1−5
Hence,[adjA]−1=adj(A−1).
(ii) we have shown that
A−1=131−14 −11 5−11−43531
And,adjA−1=131−1 2 −12−3−1−1−1−5Now,
∣A−1∣=(131)3[−14×(−13)+11×(−26)+5×(−13)]=(131)3×(−169)=13−1
∴(A−1)−1=∣A−1∣adjA−1=(13−1)1×131−1 2 −12−3−1−1−1−5=1 −2 1−231115=A
∴(A−1)−1=A