Solveeit Logo

Question

Mathematics Question on Determinants

Let A=[121 231 115]A=\begin{bmatrix}1&-2&1\\\ -2&3&1\\\ 1&1&5\end{bmatrix}verify that -
(i)[adjA]1=adj(A1)(i)[adjA]^{-1}=adj(A^{-1})
(ii)(A1)1=A(ii)(A^{-1})^{-1}=A

Answer

A=[121 231 115]A=\begin{bmatrix}1&-2&1\\\ -2&3&1\\\ 1&1&5\end{bmatrix}
A=1(151)+2(101)+1(23)=14225=13∴|A|=1(15-1)+2(-10-1)+1(-2-3)=14-22-5=-13
Now,A11=14,A12=11,A13=5A_{11}=14,A_{12}=11,A_{13}=-5
A21=11,A22=4,A23=3A_{21}=11,A_{22}=4,A_{23}=-3
A31=5,A32=3,A33=1A_{31}=-5,A_{32}=-3,A_{33}=-1
adjA=[14115 1143 531]∴adjA=\begin{bmatrix}14& 11& -5\\\ 11& 4& -3\\\ -5& -3& -1\end{bmatrix}
A1=1A(adjA)∴A^{-1}=\frac{1}{|A|}(adjA)
=113[14115 1143 531]=\frac{-1}{13}\begin{bmatrix}14& 11& -5\\\ 11& 4& -3\\\ -5& -3& -1\end{bmatrix}
=113[14115 1143 531]=\frac{1}{13}\begin{bmatrix}-14& -11& 5\\\ -11& -4& 3\\\ 5& 3& 1\end{bmatrix}
(i)adjA=14(49)11(1115)5(33+20)(i)|adjA|=14(-4-9)-11(-11-15)-5(-33+20)
=14(13)11(26)5(13)=14(-13)-11(-26)-5(-13)
=182+286+65=169=-182+286+65=169
we have,
adj(adjA)=[132613 263913 131365]adj(adjA)=\begin{bmatrix}-13& 26& -13\\\ 26& -39& -13\\\ -13& -13& 65\end{bmatrix}
[adjA]1=1adjA(adj(adjA))∴[adjA]^{-1}=\frac{1}{|adjA|}(adj(adjA))
1169[132613 263913 131365]\frac{1}{169}\begin{bmatrix}-13& 26& -13\\\ 26& -39& -13\\\ -13& -13& 65\end{bmatrix}
=113[121 231 115]=\frac{1}{13}\begin{bmatrix}-1&2&-1\\\ 2&-3&-1\\\ -1&-1&-5\end{bmatrix}
Now,A1=113[14115 1143 531]=[14131113513 1113413313 513313113]A^{-1}=\frac{1}{13}\begin{bmatrix}-14& -11& 5\\\ -11& -4& 3\\\ 5& 3& 1\end{bmatrix}=\begin{bmatrix}\frac{-14}{13}& \frac{-11}{13}& \frac{5}{13}\\\ \frac{-11}{13}& \frac{-4}{13}& \frac{3}{13}\\\ \frac{5}{13}& \frac{3}{13}& \frac{1}{13}\end{bmatrix}
adj(A1)=[4/1699/169(11/16915/169)33/169+20/169 (11/16915/169)14/16925/169(42/169+55/169) 33/169+20/169(42/169+55/169)56/169121/169]∴adj(A^{-1})=\begin{bmatrix}-4/169-9/169& -(-11/169-15/169)& -33/169+20/169\\\ -(-11/169-15/169)& -14/169-25/169& -(-42/169+55/169)\\\ -33/169+20/169& -(-42/169+55/169)& 56/169-121/169\end{bmatrix}
=1169[132613 263913 131365]=\frac{1}{169}\begin{bmatrix}-13& 26& -13\\\ 26& -39& -13\\\ -13& -13& 65\end{bmatrix}
=113[121 231 115]=\frac{1}{13}\begin{bmatrix}-1&2&-1\\\ 2&-3&-1\\\ -1&-1&-5\end{bmatrix}
Hence,[adjA]1=adj(A1).Hence,[adjA]^{-1}=adj(A^{-1}).
(ii) we have shown that
A1=113[14115 1143 531]A^{-1}=\frac{1}{13}\begin{bmatrix}-14& -11& 5\\\ -11& -4& 3\\\ 5& 3& 1\end{bmatrix}
And,adjA1=113[121 231 115]adjA^{-1}=\frac{1}{13}\begin{bmatrix}-1&2&-1\\\ 2&-3&-1\\\ -1&-1&-5\end{bmatrix}Now,
A1=(113)3[14×(13)+11×(26)+5×(13)]=(113)3×(169)=113|A^{-1}|=(\frac{1}{13})^3[-14\times(-13)+11\times(-26)+5\times(-13)]=(\frac{1}{13})^3\times(-169)=\frac{-1}{13}
(A1)1=adjA1A1=1(113)×113[121 231 115]=[121 231 115]=A∴(A^{-1})^{-1}=\frac{adjA^{-1}}{|A-1|}=\frac{1}{(\frac{-1}{13})}\times\frac{1}{13}\begin{bmatrix}-1&2&-1\\\ 2&-3&-1\\\ -1&-1&-5\end{bmatrix}=\begin{bmatrix}1&-2&1\\\ -2&3&1\\\ 1&1&5\end{bmatrix}=A
(A1)1=A∴(A^{-1})^{-1}=A