Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let A=[12 01]A = \begin{bmatrix} 1 & 2 \\\ 0 & 1 \end{bmatrix} and B=I+adj(A)+(adj(A))2++(adj(A))10.B = I + \text{adj}(A) + (\text{adj}(A))^2 + \dots + (\text{adj}(A))^{10}.Then, the sum of all the elements of the matrix BB is:

A

-110

B

22

C

-88

D

-124

Answer

-88

Explanation

Solution

We are given that A=(12 01)A = \begin{pmatrix} 1 & 2 \\\ 0 & 1 \end{pmatrix}. The adjugate matrix adj(A)\text{adj}(A) is defined as the transpose of the cofactor matrix of AA.

First, calculate adj(A)\text{adj}(A):

adj(A)=(12 01)\text{adj}(A) = \begin{pmatrix} 1 & -2 \\\ 0 & 1 \end{pmatrix}

Next, we calculate adj(A)2\text{adj}(A)^2:

adj(A)2=(12 01)(12 01)=(14 01)\text{adj}(A)^2 = \begin{pmatrix} 1 & -2 \\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\\ 0 & 1 \end{pmatrix}

Then, we calculate adj(A)10\text{adj}(A)^{10}, which follows a similar process:

adj(A)10=(120 01)\text{adj}(A)^{10} = \begin{pmatrix} 1 & -20 \\\ 0 & 1 \end{pmatrix}

The matrix BB is the sum of these matrices:

B=I+adj(A)+adj(A)2++adj(A)10B = I + \text{adj}(A) + \text{adj}(A)^2 + \cdots + \text{adj}(A)^{10}

B=(10 01)+(12 01)+(14 01)++(120 01)B = \begin{pmatrix} 1 & 0 \\\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -4 \\\ 0 & 1 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & -20 \\\ 0 & 1 \end{pmatrix}

Summing the elements of BB, we find:

B=(11110 011)B = \begin{pmatrix} 11 & -110 \\\ 0 & 11 \end{pmatrix}

Thus, the sum of all elements of BB is:

11+(110)+11=8811 + (-110) + 11 = -88