Question
Mathematics Question on Matrices and Determinants
Let A=[1 021] and B=I+adj(A)+(adj(A))2+⋯+(adj(A))10.Then, the sum of all the elements of the matrix B is:
A
-110
B
22
C
-88
D
-124
Answer
-88
Explanation
Solution
We are given that A=(1 021). The adjugate matrix adj(A) is defined as the transpose of the cofactor matrix of A.
First, calculate adj(A):
adj(A)=(1 0−21)
Next, we calculate adj(A)2:
adj(A)2=(1 0−21)(1 0−21)=(1 0−41)
Then, we calculate adj(A)10, which follows a similar process:
adj(A)10=(1 0−201)
The matrix B is the sum of these matrices:
B=I+adj(A)+adj(A)2+⋯+adj(A)10
B=(1 001)+(1 0−21)+(1 0−41)+⋯+(1 0−201)
Summing the elements of B, we find:
B=(11 0−11011)
Thus, the sum of all elements of B is:
11+(−110)+11=−88