Solveeit Logo

Question

Mathematics Question on Determinants

Let
A = [1 1 1 ]\begin{bmatrix} 1 \\\ 1 \\\ 1 \\\ \end{bmatrix} and B = [92102112 122132142 152162172 ]\begin{bmatrix} 9^2 & -10^2 & 11^2 \\\ 12^2 & 13^2 & 14^2 \\\ -15^2 & 16^2 & 17^2 \\\ \end{bmatrix}
then the value of A'BA is

A

1224

B

1042

C

540

D

539

Answer

539

Explanation

Solution

The correct answer is (D) : 539
Combining both the matrices we find,
ABA=A'BA = [111 ]\begin{bmatrix} 1 & 1 & 1 \\\ \end{bmatrix} == [92102112 122132142 152162172 ]\begin{bmatrix} 9^2 & -10^2 & 11^2 \\\ 12^2 & 13^2 & 14^2 \\\ -15^2 & 16^2 & 17^2 \\\ \end{bmatrix} AA
=[92+122152102+132+162 112142+172]= [9^2+12^2 -15^2 -10^2 +13^2 +16^2 \ 11^2 -14^2 +17^ 2 ] [1 1 1 ]\begin{bmatrix} 1 \\\ 1 \\\ 1 \\\ \end{bmatrix}
=[(92102)+(112\+122)+(132142)+(162152)+172]= [(9^2 – 10^2) + (11^2 \+ 12^2) + (13^2 – 14^2) + (16^2 – 15^2) + 17^2]
= [–19 + 265 + (–27) + 31 + 289]
= [585 – 46] = [539]