Question
Mathematics Question on Matrices
Let A=[0\[0.3em]2−20]. If M and N are two matrices given by M=k=1∑10A2k and N=k=1∑10A2k−1
then MN2 is :
A
a non-identity symmetric matrix
B
a skew-symmetric matrix
C
neither symmetric nor skew-symmetric matrix
D
an identity matrix
Answer
a non-identity symmetric matrix
Explanation
Solution
A=[0\[0.3em]2−20]
A2=[0\[0.3em]2−20][0\[0.3em]2−20]=[−4\[0.3em]00−4]=−4I
M=A2+A4+A6\+…+A20
=–4I+16l–64I\+… upto 10 terms
=–I[4–16+64…+upto 10 terms]
=−I⋅4[−4−1(−4)10−1]
=54(220−1)I
=A–4A\+16A\+… upto 10 terms
=A[−4−1(−4)10−1]
=−(5220−1)A
N2=25(220−1)2
A2=−254(220−1)2t
MN2=−12516(220−1)3
I=KI (K=±1)
(MN2)T=(KI)T=KI
∴ A is correct
So, the correct option is (A): a non-identity symmetric matrix.