Solveeit Logo

Question

Mathematics Question on Matrices

Let A=[02\[0.3em]20]A = \begin{bmatrix} 0 & -2 \\\[0.3em] 2 & 0 \end{bmatrix}. If MM and NN are two matrices given by M=k=110A2kM = \displaystyle\sum_{k=1}^{10} A^{2k} and N=k=110A2k1N = \displaystyle\sum_{k=1}^{10} A^{2k-1}
then MN2MN^2 is :

A

a non-identity symmetric matrix

B

a skew-symmetric matrix

C

neither symmetric nor skew-symmetric matrix

D

an identity matrix

Answer

a non-identity symmetric matrix

Explanation

Solution

A=[02\[0.3em]20]A = \begin{bmatrix} 0 & -2 \\\[0.3em] 2 & 0 \end{bmatrix}
A2=[02\[0.3em]20][02\[0.3em]20]A^2 = \begin{bmatrix} 0 & -2 \\\[0.3em] 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 \\\[0.3em] 2 & 0 \end{bmatrix}=[40\[0.3em]04] \begin{bmatrix} -4 & 0 \\\[0.3em] 0 & -4 \end{bmatrix}=4I−4I
M=A2+A4+A6\++A20M = A_2 + A_4 + A_6 \+ … + A^{20}
=4I+16l64I\+= –4I + 16l – 64I \+ … upto 1010 terms
=I[416+64+= –I [4 – 16 + 64 … + upto 1010 terms]]
=I4[(4)10141]=−I⋅4[\frac {(−4)^{10}−1}{−4−1}]
=45(2201)I=\frac 45(2^{20}−1)I
=A4A\+16A\+= A – 4A \+ 16A \+ … upto 1010 terms
=A[(4)10141]=A[\frac {(−4)^{10}−1}{−4−1}]

=(22015)A=−(\frac {2^{20}−1}{5})A

N2=(2201)225N^2=\frac {(2^{20}−1)^2}{2^5}

A2=425(2201)2tA^2=−\frac {4}{25}(2^{20}−1)^2t

MN2=16125(2201)3MN^{2}=−\frac {16}{125}(2^{20}−1)^3
I=KI (K±1)I=KI\ (K≠±1)
(MN2)T=(KI)T=KI(MN^2)^T = (KI)^T = KI
AA is correct

So, the correct option is (A): a non-identity symmetric matrix.