Solveeit Logo

Question

Mathematics Question on Sequence and series

Let AA be the sum of the first 2020 terms and BB be the sum of the first 4040 terms of the series 12+2.22+32+2.42+52+2.62+?.1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + ?. If B2A=100λB - 2A = 100\lambda, then λ\lambda is equal to :

A

232

B

248

C

464

D

496

Answer

248

Explanation

Solution

A=12+2.22+32+.+2.202A =1^{2}+2.2^{2}+3^{2}+\ldots .+2.20^{2}
=(12+22+32++202)+4(12+22+32++102)=\left(1^{2}+2^{2}+3^{2}+\ldots+20^{2}\right)+4\left(1^{2}+2^{2}+3^{2}+\ldots+10^{2}\right)
=20×21×416+4×10×11×216=\frac{20 \times 21 \times 41}{6}+\frac{4 \times 10 \times 11 \times 21}{6}
=2870+1540=4410=2870+1540=4410
B=12+2.22+32+.+2.402B =1^{2}+2.2^{2}+3^{2}+\ldots .+2.40^{2}
=(12+22+32+.+402)+4(12+22+32+.+202)=\left(1^{2}+2^{2}+3^{2}+\ldots .+40^{2}\right)+4\left(1^{2}+2^{2}+3^{2}+\ldots .+20^{2}\right)
=40×41×816+4×20×21×416=\frac{40 \times 41 \times 81}{6}+\frac{4 \times 20 \times 21 \times 41}{6}
=22140+11480=33620=22140+11480=33620
B2A=336208820=24800\Rightarrow B-2 A=33620-8820=24800
100λ=24800\Rightarrow 100 \lambda=24800
λ=248\lambda=248