Question
Mathematics Question on Binomial theorem
Let a be the sum of all coefficients in the expansion of (1−2x+2x2)2023(3−4x2+2x3)2024. and b=limx→0x2∫0xt2024+1log(1+t)dt.If the equations cx2+dx+e=0 and 2bx2+ax+4=0 have a common root, where c,d,e∈R, then d:c:e equals
A
2:1:4
B
4:1:4
C
1:2:4
D
1:1:4
Answer
1:1:4
Explanation
Solution
• Substitute x=1:
∴a=1
• Consider:
b=limx→0(x2x∫0x1+t2log(1+t)dt)
• Using L'Hôpital's Rule:
b=limx→0(dxd(x2)dxd(∫0x1+t2log(1+t)dt))=limx→0(2xlog(1+x))=limx→02(1+x)1=21
• Now, for the equations cx2+dx+e=0 and 2bx2+ax+4=0 to have a common root:
cx2+dx+e=0, 2bx2+ax+4=0
Since D<0 (where D denotes the discriminant of the equation), we find:
c:d:e=1:1:4