Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let aa be the sum of all coefficients in the expansion of (12x+2x2)2023(34x2+2x3)2024(1 - 2x + 2x^2)^{2023} (3 - 4x^2 + 2x^3)^{2024}. and b=limx00xlog(1+t)t2024+1dtx2b = \lim_{x \to 0} \frac{\int_0^x \frac{\log(1 + t)}{t^{2024} + 1} \, dt}{x^2}.If the equations cx2+dx+e=0cx^2 + dx + e = 0 and 2bx2+ax+4=02bx^2 + ax + 4 = 0 have a common root, where c,d,eRc, d, e \in \mathbb{R}, then d:c:ed : c : e equals

A

2:1:42 : 1 : 4

B

4:1:44 : 1 : 4

C

1:2:41 : 2 : 4

D

1:1:41 : 1 : 4

Answer

1:1:41 : 1 : 4

Explanation

Solution

• Substitute x=1x = 1:
a=1\therefore a = 1

• Consider:

b=limx0(x0xlog(1+t)1+t2dtx2)b = \lim_{x \to 0} \left( \frac{x \int_0^x \frac{\log(1+t)}{1+t^2} dt}{x^2} \right)

• Using L'Hôpital's Rule:

b=limx0(ddx(0xlog(1+t)1+t2dt)ddx(x2))=limx0(log(1+x)2x)=limx012(1+x)=12b = \lim_{x \to 0} \left( \frac{\frac{d}{dx} \left( \int_0^x \frac{\log(1+t)}{1+t^2} dt \right)}{\frac{d}{dx}(x^2)} \right) = \lim_{x \to 0} \left( \frac{\log(1+x)}{2x} \right) = \lim_{x \to 0} \frac{1}{2(1+x)} = \frac{1}{2}

• Now, for the equations cx2+dx+e=0cx^2 + dx + e = 0 and 2bx2+ax+4=02bx^2 + ax + 4 = 0 to have a common root:

cx2+dx+e=0cx^2 + dx + e = 0, 2bx2+ax+4=02bx^2 + ax + 4 = 0

Since D<0D < 0 (where DD denotes the discriminant of the equation), we find:

c:d:e=1:1:4c : d : e = 1 : 1 : 4