Solveeit Logo

Question

Question: Let A be the set containing all the integers in the range of $$f(x) = \sin^{-1}(1-2\sqrt{x}) + \tan...

Let A be the set containing all the integers in the range of

f(x)=sin1(12x)+tan1(21x1+2xx).f(x) = \sin^{-1}(1-2\sqrt{x}) + \tan^{-1}(\frac{\sqrt{2-1}-\sqrt{x}}{1+\sqrt{2x}-\sqrt{x}}).

Question 48:

The number of relations defined on A, which are symmetric but not reflexive is λ\lambda. The value of λ5\frac{\lambda}{5} is equal to

Answer

11.2

Explanation

Solution

Step 1: Determine the domain of the function f(x)f(x). The function is f(x)=sin1(12x)+tan1(21x1+(21)x)f(x) = \sin^{-1}(1-2\sqrt{x}) + \tan^{-1}(\frac{\sqrt{2}-1-\sqrt{x}}{1+(\sqrt{2}-1)\sqrt{x}}).

For sin1(u)\sin^{-1}(u) to be defined, 1u1-1 \le u \le 1. So, we must have: 112x1-1 \le 1-2\sqrt{x} \le 1 Subtracting 1 from all parts: 22x0-2 \le -2\sqrt{x} \le 0 Dividing by -2 and reversing inequalities: 0x10 \le \sqrt{x} \le 1 Squaring all parts: 0x10 \le x \le 1

Also, for x\sqrt{x} to be defined, x0x \ge 0. For the argument of tan1\tan^{-1}, let A=21A = \sqrt{2}-1 and B=xB = \sqrt{x}. The argument is AB1+AB\frac{A-B}{1+AB}. Since x0x \ge 0, x0\sqrt{x} \ge 0. Since 21>0\sqrt{2}-1 > 0, the denominator 1+(21)x1+(\sqrt{2}-1)\sqrt{x} is always 1\ge 1, so it's never zero. The identity tan1(A)tan1(B)=tan1(AB1+AB)\tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1}\left(\frac{A-B}{1+AB}\right) holds for A,B>0A, B > 0. Here A=21>0A = \sqrt{2}-1 > 0 and B=x0B = \sqrt{x} \ge 0. So the identity is valid.

Thus, the domain of f(x)f(x) is x[0,1]x \in [0, 1].

Step 2: Simplify the function f(x)f(x). Using the identity for tan1\tan^{-1}: f(x)=sin1(12x)+tan1(21)tan1(x)f(x) = \sin^{-1}(1-2\sqrt{x}) + \tan^{-1}(\sqrt{2}-1) - \tan^{-1}(\sqrt{x}) We know that tan1(21)=π8\tan^{-1}(\sqrt{2}-1) = \frac{\pi}{8}. So, f(x)=sin1(12x)+π8tan1(x)f(x) = \sin^{-1}(1-2\sqrt{x}) + \frac{\pi}{8} - \tan^{-1}(\sqrt{x}).

Step 3: Find the range of f(x)f(x). Let t=xt = \sqrt{x}. Since x[0,1]x \in [0, 1], t[0,1]t \in [0, 1]. The function becomes g(t)=sin1(12t)tan1(t)+π8g(t) = \sin^{-1}(1-2t) - \tan^{-1}(t) + \frac{\pi}{8} for t[0,1]t \in [0, 1]. Let h(t)=sin1(12t)tan1(t)h(t) = \sin^{-1}(1-2t) - \tan^{-1}(t). We will find the range of h(t)h(t) first. To find the range, we can analyze the derivative of h(t)h(t): h(t)=ddt(sin1(12t))ddt(tan1(t))h'(t) = \frac{d}{dt}(\sin^{-1}(1-2t)) - \frac{d}{dt}(\tan^{-1}(t)) h(t)=21(12t)211+t2h'(t) = \frac{-2}{\sqrt{1-(1-2t)^2}} - \frac{1}{1+t^2} h(t)=21(14t+4t2)11+t2h'(t) = \frac{-2}{\sqrt{1-(1-4t+4t^2)}} - \frac{1}{1+t^2} h(t)=24t4t211+t2h'(t) = \frac{-2}{\sqrt{4t-4t^2}} - \frac{1}{1+t^2} h(t)=22t(1t)11+t2h'(t) = \frac{-2}{2\sqrt{t(1-t)}} - \frac{1}{1+t^2} h(t)=1t(1t)11+t2h'(t) = \frac{-1}{\sqrt{t(1-t)}} - \frac{1}{1+t^2}

For t(0,1)t \in (0, 1), t(1t)>0t(1-t) > 0, so t(1t)>0\sqrt{t(1-t)} > 0. Also 1+t2>01+t^2 > 0. Therefore, h(t)h'(t) is always negative for t(0,1)t \in (0, 1). This means h(t)h(t) is a strictly decreasing function on [0,1][0, 1]. The maximum value of h(t)h(t) occurs at t=0t=0: h(0)=sin1(10)tan1(0)=sin1(1)0=π2h(0) = \sin^{-1}(1-0) - \tan^{-1}(0) = \sin^{-1}(1) - 0 = \frac{\pi}{2}. The minimum value of h(t)h(t) occurs at t=1t=1: h(1)=sin1(12)tan1(1)=sin1(1)π4=π2π4=3π4h(1) = \sin^{-1}(1-2) - \tan^{-1}(1) = \sin^{-1}(-1) - \frac{\pi}{4} = -\frac{\pi}{2} - \frac{\pi}{4} = -\frac{3\pi}{4}. So, the range of h(t)h(t) is [3π4,π2][-\frac{3\pi}{4}, \frac{\pi}{2}].

Now, the range of f(x)f(x) (which is g(t)g(t)) is [3π4+π8,π2+π8][-\frac{3\pi}{4} + \frac{\pi}{8}, \frac{\pi}{2} + \frac{\pi}{8}]. Lower bound: 3π4+π8=6π8+π8=5π8-\frac{3\pi}{4} + \frac{\pi}{8} = -\frac{6\pi}{8} + \frac{\pi}{8} = -\frac{5\pi}{8}. Upper bound: π2+π8=4π8+π8=5π8\frac{\pi}{2} + \frac{\pi}{8} = \frac{4\pi}{8} + \frac{\pi}{8} = \frac{5\pi}{8}. So, the range of f(x)f(x) is [5π8,5π8][-\frac{5\pi}{8}, \frac{5\pi}{8}].

Step 4: Determine the set A. Set A contains all integers in the range of f(x)f(x). We need to approximate the bounds: 5π85×3.14159815.7079581.963\frac{5\pi}{8} \approx \frac{5 \times 3.14159}{8} \approx \frac{15.70795}{8} \approx 1.963. So the range is approximately [1.963,1.963][-1.963, 1.963]. The integers in this range are 1,0,1-1, 0, 1. Thus, A={1,0,1}A = \{-1, 0, 1\}. The number of elements in set A is A=n=3|A| = n = 3.

Step 5: Calculate the number of symmetric but not reflexive relations on A. Let n=A=3n = |A| = 3. A relation RR on AA is a subset of A×AA \times A. The total number of possible relations is 2n22^{n^2}. For n=3n=3, n2=9n^2 = 9. So there are 29=5122^9 = 512 relations.

A relation RR is symmetric if for every (a,b)R(a, b) \in R, then (b,a)R(b, a) \in R. The diagonal elements (a,a)(a, a) can be chosen independently. There are nn such elements. For off-diagonal elements (a,b)(a, b) where aba \ne b, if (a,b)R(a, b) \in R, then (b,a)(b, a) must also be in RR. There are n2nn^2 - n off-diagonal elements. These can be grouped into n2n2\frac{n^2-n}{2} pairs of the form {(a,b),(b,a)}\{(a, b), (b, a)\}. For each pair, we can either include both elements in RR or exclude both. So there are 2n2n22^{\frac{n^2-n}{2}} ways to choose the off-diagonal elements. The total number of symmetric relations is 2n×2n2n2=2n+n2n2=2n2+n22^n \times 2^{\frac{n^2-n}{2}} = 2^{n + \frac{n^2-n}{2}} = 2^{\frac{n^2+n}{2}}. For n=3n=3, the number of symmetric relations is 232+32=29+32=2122=26=642^{\frac{3^2+3}{2}} = 2^{\frac{9+3}{2}} = 2^{\frac{12}{2}} = 2^6 = 64.

A relation RR is reflexive if for every aAa \in A, (a,a)R(a, a) \in R. For a relation to be reflexive, all nn diagonal elements must be in RR. The number of symmetric and reflexive relations: Since all nn diagonal elements must be present, there is only 11 way to choose them. The off-diagonal elements still must satisfy the symmetry condition. So there are 2n2n22^{\frac{n^2-n}{2}} ways to choose them. The number of symmetric and reflexive relations is 1×2n2n21 \times 2^{\frac{n^2-n}{2}}. For n=3n=3, the number of symmetric and reflexive relations is 23232=262=23=82^{\frac{3^2-3}{2}} = 2^{\frac{6}{2}} = 2^3 = 8.

The number of relations defined on A which are symmetric but not reflexive is the total number of symmetric relations minus the number of symmetric and reflexive relations. λ=(Number of symmetric relations)(Number of symmetric and reflexive relations)\lambda = (\text{Number of symmetric relations}) - (\text{Number of symmetric and reflexive relations}) λ=2n2+n22n2n2\lambda = 2^{\frac{n^2+n}{2}} - 2^{\frac{n^2-n}{2}} For n=3n=3: λ=2623=648=56\lambda = 2^6 - 2^3 = 64 - 8 = 56.

Step 6: Calculate λ5\frac{\lambda}{5}. λ5=565=11.2\frac{\lambda}{5} = \frac{56}{5} = 11.2.

The final answer is 11.2\boxed{11.2}.