Solveeit Logo

Question

Mathematics Question on Determinants

Let A be an orthogonal non-singular matrix of order nn, then the determinant of matrix AInAI _{ n } ie, AIn\left| A - I _{ n }\right| is equal to

A

InAI_n - A

B

AInAA \, I_n - A

C

AA

D

1nAInA-1^n \, A \, I_n - A

Answer

AInAA \, I_n - A

Explanation

Solution

The correct option is (B): AInAA \, I_n - A.
AAT=ATA=IAA ^{ T }= A ^{ T } A = I
A0| A | \neq0 order nn
AIn=?\left| A - I _{ n }\right|=?
AAT=InAA ^{ T }= I _{ n }
AIn=AAAT\Rightarrow A - I _{ n }= A - AA ^{ T }
=A(InAT)= A \left( I _{ n }- A ^{ T }\right)
AIn=A(InAT)\Rightarrow\left| A - I _{ n }\right|=\left| A \left( I _{ n }- A ^{ T }\right)\right|
A(InAT)\Rightarrow| A |\left( I _{ n }- A ^{ T }\right)
AInA\Rightarrow| A | I _{ n }- A

So, the correct option is (B): AInAA \, I_n - A