Solveeit Logo

Question

Mathematics Question on Properties of Determinants

Let A be an invertible matrix of size 4x4 with complex entries. If the determinant of adj(A) is 5,then the number of possible value of determinant of A is

A

11

B

44

C

66

D

33

E

22

Answer

11

Explanation

Solution

Given data:
Let, A be an invertible 4×44×4 matrix with complex entries.

The determinant of A is denoted as det(A),\text{det}(A), and the adjoint of AA is denoted as adj(A).\text{adj}(A).

Given that det(adj(A))=5\text{det}(\text{adj}(A)) = 5,

Using the property of determinants:

det(A×adj(A))=det(A)(n1)det(A × adj(A)) = det(A)^{(n-1)}

where nn is the size of the square matrix (in this case, n=4n = 4).

We have A×adj(A)=det(A)×IA × \text{adj}(A) = \text{det}(A) × I, (where II is the identity matrix.)

So, det(A) × det(adj(A)) = d

Substituting det(adj(A)) = 5 and n = 4:

det(A)×5=det(A)3det(A) × 5 = det(A)^3

Now, solve for det(A)det(A):

det(A)35×det(A)=0det(A)^3 - 5×det(A) = 0

det(A)×(det(A)25)=0⇒det(A) × (det(A)^2 - 5) = 0

det(A)=0det(A) = 0 or det(A)25=0det(A)^2 - 5 = 0

If det(A)=0det(A) = 0 : If det(A)=0det(A) = 0, then A is a singular matrix, and it won't be invertible. However, we are given that A is an invertible matrix, so this case is not possible.

If det(A)25=0:det(A)2=5.det(A)^2 - 5 = 0: det(A)^2 = 5.

det(A)=(5)|det(A)| = √(5)

So, considering the positive values for det(A)det(A) are +(5)+√(5).

Therefore, the number of possible values of the determinant of AA is 11.(_Ans)