Question
Mathematics Question on Limits
Let a be an integer such that limx→7[x−3a]18−[1−x] exists, where [t] is greatest integer ≤t. Then a is equal to :
A
-6
B
-2
C
2
D
6
Answer
-6
Explanation
Solution
limx→7[x−3a]18−[1−x]
exist & a∈l.
limx→7[x−3a]17−[−x]
exist
RHL = limx→7[x−3a]17−[−x] = 7−3a25[a=37]
LHL = limx→7−[x−3a]17−[−x]
= 6−3a24[a=2]
For limit to exist
LHL=RHL
7−3a25=6−3a24
⇒7−3a25=2−a8
∴a=−6
Hence, the correct option is (A): −6