Solveeit Logo

Question

Mathematics Question on Limits

Let a be an integer such that limx718[1x][x3a]lim _{x→7} \frac{18−[1−x]}{[x−3a]} exists, where [t] is greatest integer t≤ t. Then aa is equal to :

A

-6

B

-2

C

2

D

6

Answer

-6

Explanation

Solution

limx718[1x][x3a]lim _{x→7} \frac{18−[1−x]}{[x−3a]}

exist & ala∈l.

limx717[x][x3a]lim_{x→7} \frac{17−[−x]}{[x−3a]}

exist

RHLRHL = limx717[x][x3a]lim_{x→7} \frac{17−[−x]}{[x−3a]} = 2573a[a73]\frac{25}{7-3a} [a ≠\frac{7}{3}]

LHLLHL = limx717[x][x3a]lim_{x→7-} \frac{17−[−x]}{[x−3a]}

= 2463a[a2]\frac{24}{6-3a} [ a≠2]

For limit to exist

LHL=RHLLHL = RHL

2573a=2463a\frac{25}{7−3a}=\frac{24}{6−3a}

2573a=82a⇒\frac{25}{7−3a}=\frac{8}{2−a}

a=6∴ a = -6

Hence, the correct option is (A): 6-6