Solveeit Logo

Question

Question: Let $A$ be a square matrix which satisfies $A^2 - A + 2I = 0$ and $A^4 + A^8 + A^{10} = aA + bI$. ...

Let AA be a square matrix which satisfies

A2A+2I=0A^2 - A + 2I = 0 and

A4+A8+A10=aA+bIA^4 + A^8 + A^{10} = aA + bI. Then a+b=a + b =(where II is Identity Matrix, Order of matrix II and Order of matrix AA are same)

Answer

5

Explanation

Solution

The problem requires us to express higher powers of matrix AA in terms of AA and II using the given matrix equation A2A+2I=0A^2 - A + 2I = 0.

Given:

  1. A2A+2I=0A^2 - A + 2I = 0
  2. A4+A8+A10=aA+bIA^4 + A^8 + A^{10} = aA + bI

From the first equation, we can write A2A^2 as:

A2=A2I(1)A^2 = A - 2I \quad \cdots (1)

Now, we calculate A4A^4, A8A^8, and A10A^{10} in terms of AA and II.

1. Calculate A4A^4:

A4=(A2)2A^4 = (A^2)^2

Substitute A2A^2 from (1):

A4=(A2I)2A^4 = (A - 2I)^2

A4=A22(A)(2I)+(2I)2A^4 = A^2 - 2(A)(2I) + (2I)^2

A4=A24AI+4I2A^4 = A^2 - 4AI + 4I^2

Since AI=AAI = A and I2=II^2 = I:

A4=A24A+4IA^4 = A^2 - 4A + 4I

Substitute A2A^2 from (1) again:

A4=(A2I)4A+4IA^4 = (A - 2I) - 4A + 4I

A4=A2I4A+4IA^4 = A - 2I - 4A + 4I

A4=3A+2I(2)A^4 = -3A + 2I \quad \cdots (2)

2. Calculate A8A^8:

A8=(A4)2A^8 = (A^4)^2

Substitute A4A^4 from (2):

A8=(3A+2I)2A^8 = (-3A + 2I)^2

A8=(3A)2+2(3A)(2I)+(2I)2A^8 = (-3A)^2 + 2(-3A)(2I) + (2I)^2

A8=9A212AI+4I2A^8 = 9A^2 - 12AI + 4I^2

A8=9A212A+4IA^8 = 9A^2 - 12A + 4I

Substitute A2A^2 from (1):

A8=9(A2I)12A+4IA^8 = 9(A - 2I) - 12A + 4I

A8=9A18I12A+4IA^8 = 9A - 18I - 12A + 4I

A8=3A14I(3)A^8 = -3A - 14I \quad \cdots (3)

3. Calculate A10A^{10}:

A10=A8A2A^{10} = A^8 \cdot A^2

Substitute A8A^8 from (3) and A2A^2 from (1):

A10=(3A14I)(A2I)A^{10} = (-3A - 14I)(A - 2I)

A10=(3A)(A)+(3A)(2I)+(14I)(A)+(14I)(2I)A^{10} = (-3A)(A) + (-3A)(-2I) + (-14I)(A) + (-14I)(-2I)

A10=3A2+6AI14IA+28I2A^{10} = -3A^2 + 6AI - 14IA + 28I^2

Since AI=AAI = A, IA=AIA = A, and I2=II^2 = I:

A10=3A28A+28IA^{10} = -3A^2 - 8A + 28I

Substitute A2A^2 from (1):

A10=3(A2I)8A+28IA^{10} = -3(A - 2I) - 8A + 28I

A10=3A+6I8A+28IA^{10} = -3A + 6I - 8A + 28I

A10=11A+34I(4)A^{10} = -11A + 34I \quad \cdots (4)

4. Substitute into the second given equation:

Now, substitute the expressions for A4A^4, A8A^8, and A10A^{10} from (2), (3), and (4) into the equation A4+A8+A10=aA+bIA^4 + A^8 + A^{10} = aA + bI:

(3A+2I)+(3A14I)+(11A+34I)=aA+bI(-3A + 2I) + (-3A - 14I) + (-11A + 34I) = aA + bI

Combine the terms with AA and the terms with II:

(3311)A+(214+34)I=aA+bI(-3 - 3 - 11)A + (2 - 14 + 34)I = aA + bI

(17)A+(22)I=aA+bI(-17)A + (22)I = aA + bI

5. Compare coefficients:

By comparing the coefficients of AA and II on both sides, we get:

a=17a = -17

b=22b = 22

6. Calculate a+ba+b:

a+b=17+22=5a + b = -17 + 22 = 5

The final answer is 5\boxed{5}.

Explanation of the solution:

The core idea is to repeatedly use the given matrix relation A2=A2IA^2 = A - 2I to reduce any higher power of AA into a linear combination of AA and II.

  1. Express A2A^2 in terms of AA and II.
  2. Calculate A4=(A2)2A^4 = (A^2)^2, substituting A2A^2 and simplifying to the form k1A+k2Ik_1 A + k_2 I.
  3. Calculate A8=(A4)2A^8 = (A^4)^2, substituting A4A^4 and simplifying to the form k3A+k4Ik_3 A + k_4 I.
  4. Calculate A10=A8A2A^{10} = A^8 \cdot A^2, substituting A8A^8 and A2A^2 and simplifying to the form k5A+k6Ik_5 A + k_6 I.
  5. Sum the simplified expressions for A4A^4, A8A^8, and A10A^{10}.
  6. Equate the resulting expression to aA+bIaA + bI and compare coefficients to find aa and bb.
  7. Compute a+ba+b.